Free Motion Equation
   HOME





Free Motion Equation
A free motion equation is a differential equation that describes a mechanical system in the absence of external forces, but in the presence only of an inertial force depending on the choice of a reference frame. In non-autonomous mechanics on a configuration space Q\to \mathbb R, a free motion equation is defined as a second order non-autonomous dynamic equation on Q\to \mathbb R which is brought into the form : \overline q^i_=0 with respect to some reference frame (t,\overline q^i) on Q\to \mathbb R. Given an arbitrary reference frame (t,q^i) on Q\to \mathbb R, a free motion equation reads : q^i_=d_t\Gamma^i +\partial_j\Gamma^i(q^j_t-\Gamma^j) - \frac\frac(q^j_t-\Gamma^j) (q^k_t-\Gamma^k), where \Gamma^i=\partial_t q^i(t,\overline q^j) is a connection on Q\to \mathbb R associates with the initial reference frame (t,\overline q^i). The right-hand side of this equation is treated as an inertial force. A free motion equation need not exist in general. It can be defined if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Inertial Force
A fictitious force, also known as an inertial force or pseudo-force, is a force that appears to act on an object when its motion is described or experienced from a non-inertial frame of reference. Unlike real forces, which result from physical interactions between objects, fictitious forces occur due to the acceleration of the observer’s frame of reference rather than any actual force acting on a body. These forces are necessary for describing motion correctly within an accelerating frame, ensuring that Newton's second law of motion remains applicable. Common examples of fictitious forces include the centrifugal force, which appears to push objects outward in a rotating system; the Coriolis force, which affects moving objects in a rotating frame such as the Earth; and the Euler force, which arises when a rotating system changes its angular velocity. While these forces are not real in the sense of being caused by physical interactions, they are essential for accurately analyzi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Non-autonomous Mechanics
Non-autonomous mechanics describe non- relativistic mechanical systems subject to time-dependent transformations. In particular, this is the case of mechanical systems whose Lagrangians and Hamiltonians depend on the time. The configuration space of non-autonomous mechanics is a fiber bundle Q\to \mathbb R over the time axis \mathbb R coordinated by (t,q^i). This bundle is trivial, but its different trivializations Q=\mathbb R\times M correspond to the choice of different non-relativistic reference frames. Such a reference frame also is represented by a connection \Gamma on Q\to\mathbb R which takes a form \Gamma^i =0 with respect to this trivialization. The corresponding covariant differential (q^i_t-\Gamma^i)\partial_i determines the relative velocity with respect to a reference frame \Gamma. As a consequence, non-autonomous mechanics (in particular, non-autonomous Hamiltonian mechanics) can be formulated as a covariant classical field theory (in particular covariant Hamiltoni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Non-autonomous Mechanics
Non-autonomous mechanics describe non- relativistic mechanical systems subject to time-dependent transformations. In particular, this is the case of mechanical systems whose Lagrangians and Hamiltonians depend on the time. The configuration space of non-autonomous mechanics is a fiber bundle Q\to \mathbb R over the time axis \mathbb R coordinated by (t,q^i). This bundle is trivial, but its different trivializations Q=\mathbb R\times M correspond to the choice of different non-relativistic reference frames. Such a reference frame also is represented by a connection \Gamma on Q\to\mathbb R which takes a form \Gamma^i =0 with respect to this trivialization. The corresponding covariant differential (q^i_t-\Gamma^i)\partial_i determines the relative velocity with respect to a reference frame \Gamma. As a consequence, non-autonomous mechanics (in particular, non-autonomous Hamiltonian mechanics) can be formulated as a covariant classical field theory (in particular covariant Hamiltoni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Analytical Mechanics
In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses '' scalar'' properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation. Analytical mechanics was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system; it can also be called ''vectorial mechanics''. A scalar is a quantity, whereas a vector is represented by quantity and direction. The results of these two different approaches are equivalent, but the analytical mechanics approach has many advantages for complex problems. Analytica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Fictitious Force
A fictitious force, also known as an inertial force or pseudo-force, is a force that appears to act on an object when its motion is described or experienced from a non-inertial reference frame, non-inertial frame of reference. Unlike real forces, which result from physical interactions between objects, fictitious forces occur due to the acceleration of the observer’s frame of reference rather than any actual force acting on a body. These forces are necessary for describing motion correctly within an accelerating frame, ensuring that Newton's laws of motion#Second, Newton's second law of motion remains applicable. Common examples of fictitious forces include the centrifugal force, which appears to push objects outward in a rotating system; the Coriolis force, which affects moving objects in a rotating frame such as the Earth; and the Euler force, which arises when a rotating system changes its angular velocity. While these forces are not real in the sense of being caused by ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Gennadi Sardanashvily
Gennadi Sardanashvily (; March 13, 1950 – September 1, 2016) was a theoretical physicist, a principal research scientist of Moscow State University. Biography Gennadi Sardanashvily graduated from Moscow State University (MSU) in 1973, he was a Ph.D. student of the Department of Theoretical Physics ( MSU) in 1973–76, where he held a position in 1976. He attained his Ph.D. degree in physics and mathematics from MSU, in 1980, with Dmitri Ivanenko as his supervisor, and his D.Sc. degree in physics and mathematics from MSU, in 1998. Gennadi Sardanashvily was the founder and Managing Editor (2003 - 2013) of the International Journal of Geometric Methods in Modern Physics (IJGMMP). He was a member of Lepage Research Institute (Slovakia). Research area Gennadi Sardanashvily research area is geometric method in classical and quantum mechanics and field theory, gravitation theory. His main achievement is geometric formulation of classical field theory and non-autonom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Classical Mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved Scientific Revolution, substantial change in the methods and philosophy of physics. The qualifier ''classical'' distinguishes this type of mechanics from physics developed after the History of physics#20th century: birth of modern physics, revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics. The earliest formulation of classical mechanics is often referred to as Newtonian mechanics. It consists of the physical concepts based on the 17th century foundational works of Sir Isaac Newton, and the mathematical methods invented by Newton, Gottfried Wilhelm Leibniz, Leonhard Euler and others to describe the motion of Physical body, bodies under the influence of forces. Later, methods bas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]