HOME





Fourier–Mukai Transform
In algebraic geometry, a Fourier–Mukai transform ''Φ''''K'' is a functor between derived categories of coherent sheaves D(''X'') → D(''Y'') for schemes ''X'' and ''Y'', which is, in a sense, an integral transform along a kernel object ''K'' ∈ D(''X''×''Y''). Most natural functors, including basic ones like pushforwards and pullbacks, are of this type. These kinds of functors were introduced by in order to prove an equivalence between the derived categories of coherent sheaves on an abelian variety and its dual. That equivalence is analogous to the classical Fourier transform that gives an isomorphism between tempered distributions on a finite-dimensional real vector space and its dual. Definition Let ''X'' and ''Y'' be smooth projective varieties, ''K'' ∈ Db(''X''×''Y'') an object in the derived category of coherent sheaves on their product. Denote by ''q'' the projection ''X''×''Y''→''X'', by ''p'' the projection ''X''×''Y''→''Y''. Then the Fourier-Mukai tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Functor
In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in various quite different settings that a short exact sequence often gives rise to a "long exact sequence". The concept of derived functors explains and clarifies many of these observations. Suppose we are given a covariant left exact functor ''F'' : A → B between two abelian categories A and B. If 0 → ''A'' → ''B'' → ''C'' → 0 is a short exact sequence in A, then applying ''F'' yields the exact sequence 0 → ''F''(''A'') → ''F''(''B'') → ''F''(''C'') and one could ask how to continue this sequence to the right to form a long exact sequence. Strictly speaking, this question is ill-posed, since there are always numerous different ways to continue a given exact sequence to the right. But it turns out that (if A is "nice" enough) t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theories
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inability to describe the weak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

T-duality
T-duality (short for target-space duality) in theoretical physics is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius R, while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to 1/R. The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987. The two T-dual theories are equivalent in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, momentum in one description takes discrete values and is equal to the number of times the string winds around the circle in the dual description. The idea of T-duality can be extended to more complicated theories, including superstring theories. The existence of these dualities implies tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string acts like a particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and condensed matter ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow Motive
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety. In the formulation of Grothendieck for smooth projective varieties, a motive is a triple (X, p, m), where X is a smooth projective variety, p: X \vdash X is an idempotent correspondence, and ''m'' an integer; however, such a triple contains almost no information outside the context of Grothendieck's category of pure motives, where a morphism from (X, p, m) to (Y, q, n) is given by a correspondence of degree n-m. A more object-focused approach is taken by Pierre Deligne in ''Le Groupe Fondamental de la Droite Projective Moins Trois Points''. In that article, a motive is a "system of realisations" – that is, a tuple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Conjectures On Algebraic Cycles
In mathematics, the standard conjectures about algebraic cycles are several conjectures describing the relationship of algebraic cycles and Weil cohomology theories. One of the original applications of these conjectures, envisaged by Alexander Grothendieck, was to prove that his construction of pure motives gave an abelian category that is semisimple. Moreover, as he pointed out, the standard conjectures also imply the hardest part of the Weil conjectures, namely Weil's Riemann hypothesis (i.e. an analog over finite fields of the well known Riemann hypothesis) that remained open at the end of the 1960s and was proved later by Pierre Deligne; for details on the link between Weil and standard conjectures, see . The standard conjectures remain open problems, so that their application gives only conditional proofs of results. In quite a few cases, including that of the Weil conjectures, other methods have been found to prove such results unconditionally. The classical formulations of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted . An element of the form v \otimes w is called the tensor product of v and w. An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for V and W, a basis of V \otimes W is formed by all tensor products of a basis element of V and a basis element of W. The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space Z factors uniquely through a linear map V\otimes W\to Z (see the section below ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pontryagin Product
In mathematics, the Pontryagin product, introduced by , is a product on the homology of a topological space induced by a product on the topological space. Special cases include the Pontryagin product on the homology of an abelian group, the Pontryagin product on an H-space, and the Pontryagin product on a loop space. Cross product In order to define the Pontryagin product we first need a map which sends the direct product of the m-th and n-th homology group to the (m+n)-th homology group of a space. We therefore define the cross product, starting on the level of singular chains. Given two topological spaces X and Y and two singular simplices f:\Delta^m\to X and g:\Delta^n\to Y we can define the product map f\times g:\Delta^m\times\Delta^n\to X\times Y, the only difficulty is showing that this defines a singular (m+n)-simplex in X\times Y. To do this one can subdivide \Delta^m\times\Delta^n into (m+n)-simplices. It is then easy to show that this map induces a map on homology of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ample Line Bundle
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective spaces. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bundl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Bundle
In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the nth exterior power of the cotangent bundle \Omega on V. Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle T^*V. Equivalently, it is the line bundle of holomorphic n-forms on V. This is the dualising object for Serre duality on V. It may equally well be considered as an invertible sheaf. The canonical class is the divisor class of a Cartier divisor K on V giving rise to the canonical bundle — it is an equivalence class for linear equivalence on V, and any divisor in it may be called a canonical divisor. An anticanonical divisor is any divisor −K with K canonical. The anticanonical bundle is the corresponding inverse bundle \omega^. When the anticanonical bundle of V is ample, V is called a Fano variety. The adjunction formula Suppose that X is a smooth variety and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Bundle
In mathematics, a dual abelian variety can be defined from an abelian variety ''A'', defined over a field ''k''. A 1-dimensional abelian variety is an elliptic curve, and every elliptic curve is isomorphic to its dual, but this fails for higher-dimensional abelian varieties, so the concept of dual becomes more interesting in higher dimensions. Definition Let ''A'' be an abelian variety over a field ''k''. We define \operatorname^0 (A) \subset \operatorname (A) to be the subgroup of the Picard group consisting of line bundles ''L'' such that m^*L \cong p^*L \otimes q^*L, where m, p, q are the multiplication and projection maps A \times_k A \to A respectively. An element of \operatorname^0(A) is called a degree 0 line bundle on ''A''. To ''A'' one then associates a dual abelian variety ''A''v (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrized by a ''k''-variety ''T'' is defined to be a line bundle ''L'' on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]