Finitely Generated Abelian Group
In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n_s. In this case, we say that the set \ is a ''generating set'' of G or that x_1,\dots, x_s ''generate'' G. So, finitely generated abelian groups can be thought of as a generalization of cyclic groups. Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. Examples * The integers, \left(\mathbb,+\right), are a finitely generated abelian group. * The integers modulo n, \left(\mathbb/n\mathbb,+\right), are a finite (hence finitely generated) abelian group. * Any direct sum of finitely many finitely generated abelian groups is again a finitely generated abelian group. * Every lattice forms a finitely generated free abelian group. There are no other examples (up to isomorphism) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, "'" ("God made the integers, all else is the work of man").The English translation is from Gray. In a footnote, Gray attributes the German quote to "Weber 1891/92, 19, quoting from a lecture of Kronecker's of 1886". Weber, Heinrich L. 1891–1892Kronecker ''Jahresbericht der Deutschen Mathematiker-Vereinigung'' 2:5-23. (The quote is on p. 19.) Kronecker was a student and life-long friend of Ernst Kummer. Biography Leopold Kronecker was born ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
László Fuchs
László Fuchs (born June 24, 1924) is a Hungary, Hungarian-born American mathematician, the Evelyn and John G. Phillips Distinguished Professor Emeritus in Mathematics at Tulane University.Faculty profile , Tulane Univ., retrieved 2012-02-19. He is known for his research and textbooks in group theory and abstract algebra... ![]() Biography Fuchs was born on June 24, 1924, in Budapest, into an academic family: his father was a linguist and a member of the Hungarian Academy of Sciences. He earned a bachelor's degree in 1946 and a doctorate in 1947 from Eötvös ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smith Normal Form
In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith. Definition Let A be a nonzero m \times n matrix over a principal ideal domain R. There exist invertible m \times m and n \times n-matrices S,T (with entries in R) such that the product SAT is \begin \alpha_1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \alpha_2 & 0 & & & & \\ 0 & 0 & \ddots ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finitely Presented Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Invariant Factor
The invariant factors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R is a PID and M a finitely generated R-module, then :M\cong R^r\oplus R/(a_1)\oplus R/(a_2)\oplus\cdots\oplus R/(a_m) for some integer r\geq0 and a (possibly empty) list of nonzero elements a_1,\ldots,a_m\in R for which a_1 \mid a_2 \mid \cdots \mid a_m. The nonnegative integer r is called the ''free rank'' or ''Betti number'' of the module M, while a_1,\ldots,a_m are the ''invariant factors'' of M and are unique up to associatedness. The invariant factors of a matrix over a PID occur in the Smith normal form In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can ... and provide a means of computing the struc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m. General Divisors can be negative as well as positive, although often the term is restricted to posi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Summand
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, the sum is defined (a, b) + (c, d) to be (a + c, b + d); in other words, addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. Direct sums can also be formed with any finite number of summands; for example, A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). That relies on the fact that the direct sum is associative up to isomorphism. That is, (A \o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torsion-free Abelian Group
In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Definitions An abelian group \langle G, + ,0\rangle is said to be torsion-free if no element other than the identity e is of finite order. Explicitly, for any n > 0, the only element x \in G for which nx = 0 is x = 0. A natural example of a torsion-free group is \langle \mathbb Z,+,0\rangle , as only the integer 0 can be added to itself finitely many times to reach 0. More generally, the free abelian group \mathbb Z^r is torsion-free for any r \in \mathbb N. An important step in the proof of the classification of finitely generated abe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torsion Subgroup
In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group (or periodic group) if every element of ''A'' has finite order and is called torsion-free if every element of ''A'' except the identity is of infinite order. The proof that ''AT'' is closed under the group operation relies on the commutativity of the operation (see examples section). If ''A'' is abelian, then the torsion subgroup ''T'' is a fully characteristic subgroup of ''A'' and the factor group ''A''/''T'' is torsion-free. There is a covariant functor from the category of abelian groups to the category of torsion groups that sends every group to its torsion subgroup and every homomorphism to its restriction to the torsion subgroup. There is another covariant functor from the category of abelian groups to the category of torsion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |