Energy Proportional Computing
   HOME
*





Energy Proportional Computing
In computing, energy proportionality is a measure of the relationship between power consumed in a Computer, computer system, and the rate at which useful work is done (its utilization, which is one measure of Computer performance, performance). If the overall power consumption is proportional to the computer's utilization, then the machine is said to be energy proportional. Equivalently stated, for an idealized energy proportional computer, the overall energy per operation (a measure of Efficient energy use, energy efficiency) is constant for all possible workloads and operating conditions. The concept was first proposed in 2007 by Google engineers Luiz André Barroso and Urs Hölzle, who urged Computer architecture, computer architects to design servers that would be much more energy efficient for the datacenter setting. Energy proportional computing is currently an area of active research, and has been highlighted as an important design goal for cloud computing. There are many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer
A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as Computer program, programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the Computer hardware, hardware, operating system (main software), and peripheral equipment needed and used for full operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of Programmable logic controller, industrial and Consumer electronics, consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barroso2007-fig4
Barroso may refer to: Places *Barroso (region), Portugal *Barroso, Minas Gerais, Brazil Other use * Barroso (surname) *Barroso Commission The Barroso Commission was the European Commission in office from 22 November 2004 until 31 October 2014. Its president was José Manuel Barroso, who presided over 27 other commissioners (one from each of the states composing the European Union ..., the European Commission led by José Manuel Barroso from 2004 to 2014 * Brazilian ironclad ''Barroso'', a gunboat in service from 1866 to 1882 {{disambiguation, geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Networks
A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialised or general-purpose hosts. They are identified by network addresses, and may have hostnames. Hostnames serve as memorable labels for the nodes, rarely changed after initial assignment. Network addresses serve for locating and identifying the nodes by communication protocols such as the Internet Protocol. Computer networks may be classified by many criteria, including the transmission medium used to carry signals, bandwidth, communications protocols ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE Transactions On Computer-Aided Design Of Integrated Circuits And Systems
''IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems'' (sometimes abbreviated ''IEEE TCAD'' or ''IEEE Transactions on CAD'') is a monthly peer-reviewed scientific journal covering the design, analysis, and use of computer-aided design of integrated circuits and systems. It is published by the IEEE Circuits and Systems Society and the IEEE Council on Electronic Design Automation (Institute of Electrical and Electronics Engineers). The journal was established in 1982 and the editor-in-chief is Rajesh K. Gupta (University of California at San Diego). According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 2.807. Past editor-in-chief * Rajesh K. Gupta (2018-2022) * Vijaykrishnan Narayanan (2014-2018) * Sachin Sapatnekar (2010-2014) See also *Electronic design automation Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing Electron ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiconductor Device Fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuit (IC) chips such as modern computer processors, microcontrollers, and memory chips such as NAND flash and DRAM that are present in everyday electrical and electronics, electronic devices. It is a multiple-step sequence of Photolithography, photolithographic and chemical processing steps (such as surface passivation, thermal oxidation, planar process, planar diffusion and p–n junction isolation, junction isolation) during which electronic circuits are gradually created on a wafer (electronics), wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications. The entire manufacturing process takes time, from start to packaged chips ready for shipment, at least six to eight weeks (tape-out only, not including the circuit design) and is performed in highly specialized semiconduct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

JEDEC
The JEDEC Solid State Technology Association is an independent semiconductor engineering trade organization and standardization body headquartered in Arlington County, Virginia, United States. JEDEC has over 300 members, including some of the world's largest computer companies. Its scope and past activities includes standardization of part numbers, defining an electrostatic discharge (ESD) standard, and leadership in the lead-free manufacturing transition. The origin of JEDEC traces back to 1944, when RMA (subsequently renamed EIA) and NEMA established the Joint Electron Tube Engineering Council (JETEC) to coordinate vacuum tube type numberings. In 1958, with the advent of semiconductor technology, the joint JETEC-activity of EIA and NEMA was renamed into Joint Electron Device Engineering Council. NEMA discontinued its involvement in 1979. In the fall of 1999, JEDEC became a separate trade association under the current name, but maintained an EIA alliance, until EIA ceased o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Double Data Rate
In computing, a computer bus operating with double data rate (DDR) transfers data on both the rising and falling edges of the clock signal. This is also known as double pumped, dual-pumped, and double transition. The term toggle mode is used in the context of NAND flash memory. Overview The simplest way to design a clocked electronic circuit is to make it perform one transfer per full cycle (rise and fall) of a clock signal. This, however, requires that the clock signal changes twice per transfer, while the data lines change at most once per transfer. When operating at a high bandwidth, signal integrity limitations constrain the clock frequency. By using both edges of the clock, the data signals operate with the same limiting frequency, thereby doubling the data transmission rate. This technique has been used for microprocessor front-side busses, Ultra-3 SCSI, expansion buses ( AGP, PCI-X), graphics memory (GDDR), main memory (both RDRAM and DDR1 through DDR5), and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Random Access Memory
Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal-oxide-semiconductor (MOS) technology. While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention the data on the capacitor would soon be lost. To prevent this, DRAM requires an external ''memory refresh'' circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dynamic Voltage Scaling
Dynamic voltage scaling is a power management technique in computer architecture, where the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic voltage scaling to decrease voltage is known as undervolting. Undervolting is done in order to conserve power, particularly in laptops and other mobile devices, where energy comes from a battery and thus is limited, or in rare cases, to increase reliability. Overvolting is done in order to support higher frequencies for performance. The term "overvolting" is also used to refer to increasing static operating voltage of computer components to allow operation at higher speed (overclocking). Background MOSFET-based digital circuits operate using voltages at circuit nodes to represent logical state. The voltage at these nodes switches between a high voltage and a low voltage during normal operation—when the inputs to a logic gat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequency Scaling
In computer architecture, frequency scaling (also known as frequency ramping) is the technique of increasing a processor's frequency so as to enhance the performance of the system containing the processor in question. Frequency ramping was the dominant force in commodity processor performance increases from the mid-1980s until roughly the end of 2004. The effect of processor frequency on computer speed can be seen by looking at the equation for computer program runtime: : \mathrm = \frac \times \frac \times \frac , where instructions per program is the total instructions being executed in a given program, cycles per instruction is a program-dependent, architecture-dependent average value, and time per cycle is by definition the inverse of processor frequency. An increase in frequency thus decreases runtime. However, power consumption in a chip is given by the equation : P = C \times V^2 \times F, where ''P'' is power consumption, ''C'' is the capacitance being switched per cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multi-threshold CMOS
Multi-threshold CMOS (MTCMOS) is a variation of CMOS chip technology which has transistors with multiple threshold voltages (Vth) in order to optimize delay or power. The Vth of a MOSFET is the gate voltage where an inversion layer forms at the interface between the insulating layer (oxide) and the substrate (body) of the transistor. Low Vth devices switch faster, and are therefore useful on critical delay paths to minimize clock periods. The penalty is that low Vth devices have substantially higher static leakage power. High Vth devices are used on non-critical paths to reduce static leakage power without incurring a delay penalty. Typical high Vth devices reduce static leakage by 10 times compared with low Vth devices. One method of creating devices with multiple threshold voltages is to apply different bias voltages (Vb) to the base or bulk terminal of the transistors. Other methods involve adjusting the gate oxide thickness, gate oxide dielectric constant (material type), or d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Gating
Power gating is a technique used in integrated circuit design to reduce power consumption, by shutting off the current to blocks of the circuit that are not in use. In addition to reducing stand-by or leakage power, power gating has the benefit of enabling Iddq testing. Overview Power gating affects design architecture more than clock gating. It increases time delays, as power gated modes have to be safely entered and exited. Architectural trade-offs exist between designing for the amount of leakage power saving in low power modes and the energy dissipation to enter and exit the low power modes. Shutting down the blocks can be accomplished either by software or hardware. Driver software can schedule the power down operations. Hardware timers can be utilized. A dedicated power management controller is another option. An externally switched power supply is a very basic form of power gating to achieve long term leakage power reduction. To shut off the block for small intervals of ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]