Euclid's Lemma
In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, . The lemma first appeared in Euclid's '' Elements'', and is a fundamental result in elementary number theory. If the premise of the lemma does not hold, that is, if is a composite number, its consequent may be either true or false. For example, in the case of , , , composite number 10 divides , but 10 divides neither 4 nor 15. This property is the key in the proof of the fundamental theorem of arithmetic. It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains. Formulations Euclid's lemma is commonly used in the following e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Induction
Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for n = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case n = k, ''then'' it must also hold for the next case n = k + 1. These two steps establish that the statement holds for every natural number n. The base case does not necessarily begin with n = 0, but often with n = 1, and possibly with any fixed natural number n = N, establishing the trut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proposition 19
Proposition 19 may refer to a California ballot initiative: * 2020 California Proposition 19, a successful property tax change * 2010 California Proposition 19, a failed attempt at marijuana legalization * 1972 California Proposition 19, a failed attempt at marijuana legalization {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proposition 29
Proposition 29, the California Cancer Research Act, is a California ballot measure that was defeated by California voters at the California state elections, June 2012, statewide election on June 5, 2012. The measure would have placed a $1 excise on tobacco products into a protected fund to finance medical research on smoking-related illnesses, strengthen California’s smoking prevention and cessation programs, and enforce the state’s existing tobacco laws. The independent California Legislative Analyst's Office projected that the measure would have generated approximately $855 million in first year, declining slightly but predictably (about 3% annually due to decrease in the number of smokers) every year thereafter. The measure would have created a nine-member committee charged with administering direct revenues. This oversight committee was to be composed of cancer-research medical professionals, University of California Chancellors, and representatives of national disea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Induction
Mathematical induction is a method for proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for n = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case n = k, ''then'' it must also hold for the next case n = k + 1. These two steps establish that the statement holds for every natural number n. The base case does not necessarily begin with n = 0, but often with n = 1, and possibly with any fixed natural number n = N, establishing the truth of the statement ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Greatest Common Divisor
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest common divisor of and is denoted \gcd (x,y). For example, the GCD of 8 and 12 is 4, that is, . In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include highest common factor, etc. Historically, other names for the same concept have included greatest common measure. This notion can be extended to polynomials (see ''Polynomial greatest common divisor'') and other commutative rings (see ' below). Overview Definition The ''greatest common divisor'' (GCD) of integers and , at least one of which is nonzero, is the greatest positive integer such that is a divisor of both and ; that is, there are integers and such that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Algorithm
In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his ''Elements'' (). It is an example of an ''algorithm'', a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations. The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bézout's Identity
In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Here the greatest common divisor of and is taken to be . The integers and are called Bézout coefficients for ; they are not unique. A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that and ; equality occurs only if one of and is a multiple of the other. As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as , with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem, result from Bézout's identity. A Bézout domain is an integral domain in which Bézout's identity holds. In particular, Bézout's identity holds in principal ideal domains. Every theorem that results from ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coprime
In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ''is prime to'' or ''is coprime with'' . The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both divisible by 3. The numerator and denominator of a reduced fraction are coprime, by definition. Notation and testing When the integers and are coprime, the standard way of expressing this fact in mathematical notation is to indicate that their greatest common divisor is one, by the formula or . In their 1989 textbook '' Concrete Mathematics'', Ronald Graham, Donald Knuth, and Oren Patashnik proposed an alte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss's Lemma (number Theory)
Gauss's lemma can mean any of several mathematical lemmas named after Carl Friedrich Gauss: * Gauss's lemma (polynomials), the greatest common divisor of the coefficients is a multiplicative function * Gauss's lemma (number theory), condition under which an integer is a quadratic residue * Gauss's lemma (Riemannian geometry), theorem in manifold theory * A generalization of Euclid's lemma is sometimes called Gauss's lemma See also * List of topics named after Carl Friedrich Gauss {{Mathematical disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Disquisitiones Arithmeticae
(Latin for ''Arithmetical Investigations'') is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory. In this book, Gauss brought together and reconciled results in number theory obtained by such eminent mathematicians as Fermat, Euler, Lagrange, and Legendre, while adding profound and original results of his own. Scope The ''Disquisitiones'' covers both elementary number theory and parts of the area of mathematics now called algebraic number theory. Gauss did not explicitly recognize the concept of a group, which is central to modern algebra, so he did not use this term. His own title for his subject was Higher Arithmetic. In his Preface to the ''Disquisitiones'', Gauss describes the scope of the book as follows: Gauss also writes, "When confronting man ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and professor of astronomy from 1807 until his death in 1855. While studying at the University of Göttingen, he propounded several mathematical theorems. As an independent scholar, he wrote the masterpieces '' Disquisitiones Arithmeticae'' and ''Theoria motus corporum coelestium''. Gauss produced the second and third complete proofs of the fundamental theorem of algebra. In number theory, he made numerous contributions, such as the composition law, the law of quadratic reciprocity and the Fermat polygonal number theorem. He also contributed to the theory of binary and ternary quadratic forms, the construction of the heptadecagon, and the theory of hypergeometric series. Due to Gauss' extensive and fundamental contributions to science ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |