Eris (dwarf Planet)
Eris (minor-planet designation: 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disc, scattered disk and has a high-Orbital eccentricity, eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Michael E. Brown, Mike Brown and verified later that year. It was named in September 2006 after the GrecoRoman Eris (mythology), goddess of strife and discord. Eris is the List of Solar System objects by size, ninth-most massive known object orbiting the Sun and the sixteenth-most massive overall in the Solar System (counting natural satellite, moons). It is also the largest known object in the Solar System that has not been visited by a spacecraft. Eris has been measured at in diameter; its mass is 0.28% that of the Earth mass, Earth and 27% greater than that of Pluto, although Pluto is slightly larger by volume. Both Eris and Pluto have a sur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eris Symbol (bold)
Eris most often refers to: * Eris (mythology) or , the goddess of discord in Greek mythology * Eris (dwarf planet), the second-largest known dwarf planet in the Solar System Eris may also refer to: Fictional characters * Eris Vanserra, the eldest son of Beron, the High Lord of the Autumn Court from the ''A Court of Thorns and Roses'' series * Eris Morn, a character from the ''Destiny'' video game series * Eris the Deceiver, a character from ''The Grim Adventures of Billy & Mandy'' * Eris, a character from ''Star Trek Deep Space Nine'' episode "The Jem'Hadar" * Eris, a character in '' Sinbad: Legend of the Seven Seas'' * Eris, a character from the '' Asobi ni Iku yo!'' * Eris, a character in ''Drakengard 2'' * Eris, a character from Lego's Legends of Chima theme * Eris, a character from '' KonoSuba'' * Eris Boreas Greyrat, a character in Mushoku Tensei Other uses * Eris (confection), a traditional confection of Tabriz * Eris (fictional planet), a fictional planet in ''Damoc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
G-force
The g-force or gravitational force equivalent is a Specific force, mass-specific force (force per unit mass), expressed in Unit of measurement, units of standard gravity (symbol ''g'' or ''g''0, not to be confused with "g", the symbol for grams). It is used for sustained accelerations that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 ''g'', equaling the conventional value of gravitational acceleration on Earth, about . More transient acceleration, accompanied with significant jerk (physics), jerk, is called Shock (mechanics), ''shock''. When the g-force is produced by the surface of one object being pushed by the surface of another object, the reaction force to this push produces an equal and opposite force for every unit of each object's mass. The types of forces involved are transmitted through objects by interior Stress (mechanics), mechanical stresses. Gravitational acceleration is one cause of an object's accelera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particle, elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple Mass in special relativity, definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure (mathematics), measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the Force, strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is Mass versus weight, not the same as weight, even though mass is often determined by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minor-planet Designation
A formal minor-planet designation is, in its final form, a number–name combination given to a minor planet (asteroid, centaur, trans-Neptunian object and dwarf planet but not comet). Such designation always features a leading number (catalog or IAU number) assigned to a body once its orbital path is sufficiently secured (so-called "numbering"). The formal designation is based on the minor planet's provisional designation, which was previously assigned automatically when it had been observed for the first time. Later on, the provisional part of the formal designation may be replaced with a name (so-called "naming"). Both formal and provisional designations are overseen by the Minor Planet Center (MPC), a branch of the International Astronomical Union. Currently, a number is assigned only after the orbit has been secured by four well-observed oppositions. For unusual objects, such as near-Earth asteroids, numbering might already occur after three, maybe even only two, opposition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Milliarcsecond
A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of Angular unit, angular measurement equal to of a Degree (angle), degree. Since one degree is of a turn (geometry), turn, or complete rotation, one arcminute is of a turn. The nautical miles, nautical mile (nmi) was originally defined as the meridian arc, arc length of a minute of latitude on a spherical Earth, so the actual Earth's circumference is very near . A minute of arc is of a radian. A second of arc, arcsecond (abbreviated as arcsec), or arc second, denoted by the symbol , is a unit of Angular unit, angular measurement equal to of a minute of arc, of a degree, of a turn, and (about ) of a radian. These units originated in Babylonian astronomy as sexagesimal (base 60) subdivisions of the degree; they are used in fields that involve very small angles, such as astronomy, optometry, ophthalmology, optics, navigation, land surveying, and marksmanship. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kelvin
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By definition, the Celsius scale (symbol °C) and the Kelvin scale have the exact same magnitude; that is, a rise of 1 K is equal to a rise of 1 °C and vice versa, and any temperature in degrees Celsius can be converted to kelvin by adding 273.15. The 19th century British scientist Lord Kelvin first developed and proposed the scale. It was often called the "absolute Celsius" scale in the early 20th century. The kelvin was formally added to the International System of Units in 1954, defining 273.16 K to be the triple point of water. The Celsius, Fahrenheit, and Rankine scales were redefined in terms of the Kelvin scale using this definition. The 2019 revision of the SI now defines the kelvin in terms of energy by setting the Bo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bond Albedo
The Bond albedo (also called spheric albedo, planetary albedo, and bolometric albedo), named after the American astronomer George Phillips Bond (1825–1865), who originally proposed it, is the fraction of power in the total electromagnetic radiation incident on an astronomical body that is scattered back out into space. Because the Bond albedo accounts for all of the light scattered from a body at all wavelengths and all phase angles, it is a necessary quantity for determining how much energy a body absorbs. This, in turn, is crucial for determining the equilibrium temperature of a body. Because bodies in the outer Solar System are always observed at very low phase angles from the Earth, the only reliable data for measuring their Bond albedo comes from spacecraft. Phase integral The Bond albedo (''A'') is related to the geometric albedo (''p'') by the expression :A = pq where ''q'' is termed the ''phase integral'' and is given in terms of the directional scattered flux '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Albedo
In astronomy, the geometric albedo of a celestial body is the ratio of its actual brightness as seen from the light source (i.e. at zero phase angle (astronomy), phase angle) to that of an ''idealized'' flat, fully reflecting, diffuse reflection, diffusively scattering (Lambertian reflectance, Lambertian) disk with the same cross-section. (This phase angle refers to the direction of the light paths and is not a phase angle in its normal meaning in Phase (waves), optics or Phasor (electronics), electronics.) Diffuse reflection, Diffuse scattering implies that radiation is reflected isotropically with no memory of the location of the incident light source. Zero phase angle corresponds to looking along the direction of illumination. For Earth-bound observers, this occurs when the body in question is at opposition (astronomy), opposition and on the ecliptic. The visual geometric albedo refers to the geometric albedo quantity when accounting for only electromagnetic radiation in the vis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Angle
In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. More generally angles are also formed wherever two lines, rays or line segments come together, such as at the corners of triangles and other polygons. An angle can be considered as the region of the plane bounded by the sides. Angles can also be formed by the intersection of two planes or by two intersecting curves, in which case the rays lying tangent to each curve at the point of intersection define the angle. The term ''angle'' is also used for the size, magnitude (mathematics), magnitude or Physical quantity, quantity of these types of geometric figures and in this context an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ecliptic North Pole
An orbital pole is either point at the ends of the orbital normal, an imaginary line segment that runs through a focus of an orbit (of a revolving body like a planet, moon or satellite) and is perpendicular (or normal) to the orbital plane. Projected onto the celestial sphere, orbital poles are similar in concept to celestial poles, but are based on the body's orbit instead of its equator. The north orbital pole of a revolving body is defined by the right-hand rule. If the fingers of the right hand are curved along the direction of orbital motion, with the thumb extended and oriented to be parallel to the orbital axis, then the direction the thumb points is defined to be the orbital north. The poles of Earth's orbit are referred to as the ''ecliptic poles''. For the remaining planets, the orbital pole in ecliptic coordinates is given by the longitude of the ascending node () and inclination (): In the following table, the planetary orbit poles are given in both celestial c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ecliptic Plane
The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars – specifically the Zodiac constellations. The planets of the Solar System can also be seen along the ecliptic, because their orbital planes are very close to Earth's. The Moon's orbital plane is also similar to Earth's; the ecliptic is so named because the ancients noted that eclipses only occur when the Moon is crossing it. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Ancient scientists were able to calculate Earth's axial tilt by comparing the ecliptic plane to that of the equator. Sun's apparent motion The eclipt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |