Encyclopedia Of Triangle Centres
   HOME





Encyclopedia Of Triangle Centres
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or " centers" associated with the geometry of a triangle. This resource is hosted at the University of Evansville. It started from a list of 400 triangle centers published in the 1998 book Triangle Centers and Central Triangles by Professor Clark Kimberling. , the list identifies 68,547 triangle centers and is managed cooperatively by an international team of geometry researchers. The encyclopedia is integrated into Geogebra. Each point in the list is identified by an index number of the form ''X''(''n'') —for example, ''X''(1) is the incenter. The information recorded about each point includes its trilinear and barycentric coordinates and its relation to lines joining other identified points. Links to The Geometer's Sketchpad diagrams are provided for key points. The encyclopedia also includes a glossary of terms and definitions. Each point in the list is assigned a unique name. In cases w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Center
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, all triangle centers coincide at its centroid. However the triangle centers generally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Altitude (triangle)
In geometry, an altitude of a triangle is a line segment through a given Vertex (geometry), vertex (called ''apex (geometry), apex'') and perpendicular to a line (geometry), line containing the side or edge (geometry), edge opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the ''base (geometry), base'' and ''extended side, extended base'' of the altitude. The point (geometry), point at the intersection of the extended base and the altitude is called the ''foot'' of the altitude. The length of the altitude, often simply called "the altitude" or "height", symbol , is the distance between the foot and the apex. The process of drawing the altitude from a vertex to the foot is known as ''dropping the altitude'' at that vertex. It is a special case of orthogonal projection. Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol ) equals the triangle's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isodynamic Point
In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an Inversive geometry, inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are Similarity (geometry), similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by . Distance ratios The isodynamic poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Point
In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it. The Fermat point gives a solution to the geometric median and Steiner tree problems for three points. Construction The Fermat point of a triangle with largest angle at most 120° is simply its first isogonic center or X(13), which is constructed as follows: # Construct an equilateral triangle on each of two arbitrarily chosen sides of the given triangle. # Draw a line from each new vertex to the opposite vertex of the original triangle. # The two lines intersect at the Fermat point. An alternative method is the following: # On each of two ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feuerbach Point
In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach..Encyclopedia of Triangle Centers
, accessed 2014-10-24.
Feuerbach's theorem, published by Feuerbach in 1822, states more generally that the nine-point circle is tangent to the three s of the triangle as well as its incircle. A very short proof of this theorem based on
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spieker Circle
In geometry, the incircle of the medial triangle of a triangle is the Spieker circle, named after 19th-century German geometer Theodor Spieker. Its center, the Spieker center, in addition to being the incenter of the medial triangle, is the center of mass of the uniform-density boundary of triangle. The Spieker center is also the point where all three cleavers of the triangle (perimeter bisectors with an endpoint at a side's midpoint) intersect each other. History The Spieker circle and Spieker center are named after Theodor Spieker, a mathematician and professor from Potsdam, Germany. In 1862, he published , dealing with planar geometry. Due to this publication, influential in the lives of many famous scientists and mathematicians including Albert Einstein, Spieker became the mathematician for whom the Spieker circle and center were named. Construction To find the Spieker circle of a triangle, the medial triangle must first be constructed from the midpoints of each side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spieker Center
In geometry, the Spieker center is a special point associated with a plane triangle. It is defined as the center of mass of the perimeter of the triangle. The Spieker center of a triangle is the center of gravity of a homogeneous wire frame in the shape of . The point is named in honor of the 19th-century Germany, German geometer Theodor Spieker. The Spieker center is a triangle center and it is listed as the point ''X''(10) in Clark Kimberling's Encyclopedia of Triangle Centers. Location The following result can be used to locate the Spieker center of any triangle. :The Spieker center of triangle is the incenter of the medial triangle of . That is, the Spieker center of is the center of the circle inscribed in the medial triangle of . This circle is known as the Spieker circle. The Spieker center is also located at the intersection of the three Cleaver (geometry), cleavers of triangle . A cleaver of a triangle is a line segment that Bisection#Area bisectors and area-perimet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mittenpunkt
In geometry, the (from German: ''middle point'') of a triangle is a triangle center: a point defined from the triangle that is invariant under Euclidean transformations of the triangle. It was identified in 1836 by Christian Heinrich von Nagel as the symmedian point of the excentral triangle of the given triangle.. Coordinates The mittenpunkt has trilinear coordinates :(b+c-a): (c+a-b ):(a+b-c) where , , and are the side lengths of the given triangle. Expressed instead in terms of the angles , , and , the trilinears arehttp://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers :\cot \frac : \cot \frac : \cot \frac=(\csc A+\cot A):(\csc B+\cot B):(\csc C+\cot C). The barycentric coordinates are :a(b+c-a):b(c+a-b):c(a+b-c) = (1+\cos A):(1+\cos B):(1+\cos C). Collinearities The mittenpunkt is at the intersection of the line connecting the centroid and the Gergonne point, the line connecting the incenter and the symmedian point and the line conn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiperimeter
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter . Motivation: triangles The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths :s = \frac. Properties In any triangle, any vertex and the point where the opposite excircle touches the triangle partition the triangle's perimeter into two equal lengths, thus creating two paths each of which has a length equal to the semiperimeter. If are as shown in the figure, then the segments connecting a vertex with the opposite excircle tangency (, shown in red in the diagram) are known as splitters, and :\begin s &= , AB, +, A'B, =, AB, +, AB', =, AC, +, A'C, \\ &= , AC, +, AC', =, BC, +, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nagel Point
In geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters. Construction Given a triangle , let be the extouch points in which the -excircle meets line , the -excircle meets line , and the -excircle meets line , respectively. The lines concur in the Nagel point of triangle . Another construction of the point is to start at and trace around triangle half its perimeter, and similarly for and . Because of this construction, the Nagel point is sometimes also called the bisected perimeter point, and the segments are called the triangle's splitters. There exists an easy construction of the Nagel point. Starting from each vertex of a triangle, it suffices to carry twice the length of the opposite edge. We obtain three lines which concur at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incircle And Excircles Of A Triangle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmedian
In geometry, symmedians are three particular lines associated with every triangle. They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the corresponding angle bisector (the line through the same vertex that divides the angle there in half). The angle formed by the symmedian and the angle bisector has the same measure as the angle between the median and the angle bisector, but it is on the other side of the angle bisector. The three symmedians meet at a triangle center called the Lemoine point. Ross Honsberger has called its existence "one of the crown jewels of modern geometry".. Isogonality Many times in geometry, if we take three special lines through the vertices of a triangle, or ''cevians'', then their reflections about the corresponding angle bisectors, called ''isogonal lines'', will also have interesting properties. For instance, if three cevians of a triangle intersec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]