HOME



picture info

Electrical Impedance
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of Electrical_resistance, resistance and Electrical_reactance, reactance in a electrical circuit, circuit. Quantitatively, the impedance of a two-terminal Electrical element, circuit element is the ratio of the phasor, complex representation of the Sine wave, sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. In general, it depends upon the frequency of the sinusoidal voltage. Impedance extends the concept of Electrical resistance, resistance to alternating current (AC) circuits, and possesses both Euclidean vector, magnitude and Phase (waves), phase, unlike resistance, which has only magnitude. Impedance can be represented as a complex number, with the same units as resistance, for which the SI unit is the ohm (). Its symbol is usually , and it may be represented by writing its magnitude and phase in the Polar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Engineering
Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after the commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use. Electrical engineering is divided into a wide range of different fields, including computer engineering, systems engineering, power engineering, telecommunications, radio-frequency engineering, signal processing, instrumentation, photovoltaic cells, electronics, and optics and photonics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics, Electromagnetism, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics/control ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Port (circuit Theory)
In electrical circuit theory, a port is a pair of terminals connecting an electrical network or circuit to an external circuit, as a point of entry or exit for electrical energy. A port consists of two nodes (terminals) connected to an outside circuit which meets the ''port condition'' – the currents flowing into the two nodes must be equal and opposite. The use of ports helps to reduce the complexity of circuit analysis. Many common electronic devices and circuit blocks, such as transistors, transformers, electronic filters, and amplifiers, are analyzed in terms of ports. In multiport network analysis, the circuit is regarded as a "black box" connected to the outside world through its ports. The ports are points where input signals are applied or output signals taken. Its behavior is completely specified by a matrix of parameters relating the voltage and current at its ports, so the internal makeup or design of the circuit need not be considered, or even known, in de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arthur Kennelly
Arthur Edwin Kennelly (December 17, 1861 – June 18, 1939) was an American electrical engineer and mathematician. Biography Kennelly was born December 17, 1861, in Colaba, in Bombay Presidency, British India, and was educated at University College School in London. He was the son of Irish naval officer Captain David Joseph Kennelly (1831–1907) and Catherine Gibson Heycock (1839–1863). His mother died when he was three years old. In 1863, his father retired from the navy and later Arthur and his father returned to England. In 1878, his father married Ellen L.Spencer and moved the family to Sydney, Nova Scotia, when he took over the Sydney and Louisbourg Coal and Railway Company Limited. By his father's third marriage, Arthur gained four half siblings, Zaida Kennelly in 1881, David J. Kennelly Jr. in 1882, Nell K. Kennelly in 1883, and Spencer M. Kennelly in 1885. Kennelly joined Thomas Edison's West Orange laboratory in December 1887, staying until March 1894. While there h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ohm's Law
Ohm's law states that the electric current through a Electrical conductor, conductor between two Node (circuits), points is directly Proportionality (mathematics), proportional to the voltage across the two points. Introducing the constant of proportionality, the Electrical resistance, resistance, one arrives at the three mathematical equations used to describe this relationship: V = IR \quad \text\quad I = \frac \quad \text\quad R = \frac where is the current through the conductor, ''V'' is the voltage measured across the conductor and ''R'' is the electrical resistance, resistance of the conductor. More specifically, Ohm's law states that the ''R'' in this relation is constant, independent of the current. If the resistance is not constant, the previous equation cannot be called ''Ohm's law'', but it can still be used as a definition of Electrical resistance and conductance#Static and differential resistance, static/DC resistance. Ohm's law is an empirical law, empirical rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operational Calculus
Operational calculus, also known as operational analysis, is a technique by which problems in Mathematical Analysis, analysis, in particular differential equations, are transformed into algebraic problems, usually the problem of solving a polynomial equation. History The idea of representing the processes of calculus, differentiation and integration, as operators has a long history that goes back to Gottfried Wilhelm Leibniz. The mathematician Louis François Antoine Arbogast was one of the first to manipulate these symbols independently of the function to which they were applied. This approach was further developed by Francois-Joseph Servois who developed convenient notations. Servois was followed by a school of British and Irish mathematicians including Charles James Hargreave, George Boole, Bownin, Carmichael, Doukin, Graves, Murphy, William Spottiswoode and Sylvester. Treatises describing the application of operator methods to ordinary and partial differential equations w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oliver Heaviside
Oliver Heaviside ( ; 18 May 1850 – 3 February 1925) was an English mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, and rewrote Maxwell's equations in the form commonly used today. He significantly shaped the way Maxwell's equations are understood and applied in the decades following Maxwell's death. His formulation of the telegrapher's equations became commercially important during his own lifetime, after their significance went unremarked for a long while, as few others were versed at the time in his novel methodology. Although at odds with the scientific establishment for most of his life, Heaviside changed the face of telecommunications, mathematics, and science. Early life Heaviside was born in Camden Town, London, at 55 Kings Street (now Plender Street), the youngest of three children of Thomas, a draughtsman and wood engraver, and Rachel Elizabeth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Number
An imaginary number is the product of a real number and the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square (algebra), square of an imaginary number is . For example, is an imaginary number, and its square is . The number 0, zero is considered to be both real and imaginary. Originally coined in the 17th century by René Descartes as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century). An imaginary number can be added to a real number to form a complex number of the form , where the real numbers and are called, respectively, the ''real part'' and the ''imaginary part'' of the complex number. History Although the Greek mathematician and engineer Heron of Alexandria is noted as the first t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maxwell Bridge
A Maxwell bridge is a modification to a Wheatstone bridge used to measure an unknown inductance (usually of low Q value) in terms of calibrated resistance and inductance or resistance and capacitance. When the calibrated components are a parallel resistor and capacitor, the bridge is known as a Maxwell bridge. It is named for James C. Maxwell, who first described it in 1873. It uses the principle that the positive phase angle of an inductive impedance can be compensated by the negative phase angle of a capacitive impedance when put in the opposite arm and the circuit is at resonance; i.e., no potential difference across the detector (an AC voltmeter or ammeter)) and hence no current flowing through it. The unknown inductance then becomes known in terms of this capacitance. With reference to the picture, in a typical application R_1 and R_4 are known fixed entities, and R_2 and C_2 are known variable entities. R_2 and C_2 are adjusted until the bridge is balanced. R_3 and L_3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Impedance Analyzer
An impedance analyzer is a type of electronic test equipment used to measure complex electrical impedance as a function of test frequency. Impedance is an important parameter used to characterize electronic components, electronic circuits, and the materials used to make components. Impedance analysis can also be used to characterize materials exhibiting dielectric behavior such as biological tissue, foodstuffs or geological samples. Impedance analyzers come in three distinct hardware implementations, and together these three implementations can probe from ultra low frequency to ultra high frequency and can measure impedances from μΩ to TΩ. Operation Impedance analyzers are a class of instruments which measure complex electrical impedance as a function of frequency. This involves the phase sensitive measurement of current and voltage applied to a device under test while the measurement frequency is varied over the course of the measurement. Key specifications of an impedance a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Siemens (unit)
The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm () and is also referred to as the '' mho''. The siemens was adopted by the IEC in 1935, and the 14th General Conference on Weights and Measures approved the addition of the siemens as a derived unit in 1971. The unit is named after Ernst Werner von Siemens. In English, the same word ''siemens'' is used both for the singular and plural. Like other SI units named after people, the name of the unit (siemens) is not capitalized. Its symbol (S), however, ''is'' capitalized to distinguish it from the '' second'', whose symbol (s) is lower case. The related property, electrical conductivity, is measured in units of siemens per metre (S/m). Definition For an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Admittance
In electrical engineering, admittance is a measure of how easily a circuit or device will allow a current to flow. It is defined as the multiplicative inverse, reciprocal of Electrical impedance, impedance, analogous to how Electrical resistance and conductance, conductance and resistance are defined. The SI unit of admittance is the siemens (unit), siemens (symbol S); the older, synonymous unit is mho, and its symbol is ℧ (an upside-down uppercase omega Ω). Oliver Heaviside coined the term ''admittance'' in December 1887. Heaviside used to represent the magnitude of admittance, but it quickly became the conventional symbol for admittance itself through the publications of Charles Proteus Steinmetz. Heaviside probably chose simply because it is next to in the alphabet, the conventional symbol for impedance. Admittance , measured in Siemens (unit), siemens, is defined as the inverse of Electrical impedance, impedance , measured in Ohm (unit), ohms: Y \equiv \frac electric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]