Earth's Mantle
Earth's mantle is a layer of silicate mineral, silicate rock between the Earth's crust, crust and the Earth's outer core, outer core. It has a mass of and makes up 67% of the mass of Earth. It has a thickness of making up about 46% of Earth's radius and 84% of Earth's volume. It is predominantly solid but, on geologic time scales, it behaves as a viscosity, viscous fluid, sometimes described as having the consistency of caramel. Partial melting of the mantle at mid-ocean ridges produces oceanic crust, and partial melting of the mantle at subduction zones produces continental crust. Structure Rheology Earth's upper mantle is divided into two major rheology, rheological layers: the rigid lithosphere comprising the uppermost mantle (the lithospheric mantle), and the more ductile asthenosphere, separated by the Lithosphere-Asthenosphere boundary, lithosphere-asthenosphere boundary. Lithosphere underlying ocean crust has a thickness of around , whereas lithosphere underlying cont ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Earth Internal Structure
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all of Earth's water is contained in its global ocean, covering Water distribution on Earth, 70.8% of Earth's crust. The remaining 29.2% of Earth's crust is land, most of which is located in the form of continental landmasses within Earth's land hemisphere. Most of Earth's land is at least somewhat humid and covered by vegetation, while large Ice sheet, sheets of ice at Polar regions of Earth, Earth's polar polar desert, deserts retain more water than Earth's groundwater, lakes, rivers, and Water vapor#In Earth's atmosphere, atmospheric water combined. Earth's crust consists of slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth's outer core, Earth has a liquid outer core that generates a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Core–mantle Boundary
The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic perovskite mineralogy of the deep mantle named post-perovskite. Seismic tomography studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific Large low-shear-velocity provinces (LLSVP). The uppermost section of the outer core is thought to be about 500–1,800 K hotter than the overlying mantle, creating a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Post-perovskite
Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur in portions of the lowermost few hundred km of Earth's mantle. The post-perovskite phase has implications for the ''D''′′ layer, which influences the convective mixing in the mantle responsible for plate tectonics. Post-perovskite has the same crystal structure as the synthetic solid compound CaIrO3, and is often referred to as the "CaIrO3-type phase of MgSiO3" in the literature. The crystal system of post-perovskite is orthorhombic, its space group is ''Cmcm'', and its structure is a stacked SiO6-octahedral sheet along the ''b'' axis. The name "post-perovskite" derives from silicate perovskite, the stable phase of MgSiO3 throughout most of Earth's mantle, which has the perovskite structure. The prefix "post-" refers to the fa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bridgmanite
Silicate perovskite is either (the magnesium end-member is called bridgmanite) or (calcium silicate known as davemaoite) when arranged in a perovskite structure. Silicate perovskites are not stable at Earth's surface, and mainly exist in the lower part of Earth's mantle, between about depth. They are thought to form the main mineral phases of the lower mantle, together with ferropericlase. Discovery The existence of silicate perovskite in the mantle was first suggested in 1962, and both and had been synthesized experimentally before 1975. By the late 1970s, it had been proposed that the seismic discontinuity at about 660 km in the mantle represented a change from spinel structure minerals with an olivine composition to silicate perovskite with ferropericlase. Natural silicate perovskite was discovered in the heavily shocked Tenham meteorite. In 2014, the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Associat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lower Mantle (Earth)
The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2890 km below Earth's surface; between the transition zone and the outer core. The preliminary reference Earth model (PREM) separates the lower mantle into three sections, the uppermost (660–770 km), mid-lower mantle (770–2700 km), and the D layer (2700–2890 km). Pressure and temperature in the lower mantle range from 24–127 GPa and 1900–2600 K. It has been proposed that the composition of the lower mantle is pyrolitic, containing three major phases of bridgmanite, ferropericlase, and calcium-silicate perovskite. The high pressure in the lower mantle has been shown to induce a spin transition of iron-bearing bridgmanite and ferropericlase, which may affect both mantle plume dynamics and lower mantle chemistry. The mantle moves at about 1 cm per year. The upper boundary is defined by the sharp increase in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ringwoodite
Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a magnesium iron silicate). Ringwoodite is notable for being able to contain hydroxide ions within its structure. In this case two hydroxide ions usually take the place of a magnesium ion and two oxide ions. Combined with evidence of its occurrence deep in the Earth's mantle, this suggests that there is from one to three times the world ocean's equivalent of water in the mantle transition zone from 410 to 660 km deep. This mineral was first identified in the Tenham meteorite in 1969, and is inferred to be present in large quantities in the Earth's mantle. Olivine, wadsleyite, and ringwoodite are polymorphs found in the upper mantle of the earth. At depths greater than about , other minerals, including some with the perovskite st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wadsleyite
Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing pressure and eventually transforms into spinel-structured ringwoodite (γ-(Mg,Fe)2SiO4) as pressure increases further. The structure can take up a limited amount of other bivalent cations instead of magnesium, but contrary to the α and γ structures, a β structure with the sum formula Fe2SiO4 is not thermodynamically stable. Its cell parameters are approximately a = 5.7 Å, b = 11.71 Å and c = 8.24 Å. Wadsleyite is found to be stable in the upper part of the Transition Zone of the Earth's mantle between in depth. Because of oxygen atoms not bound to silicon in the Si2O7 groups of wadsleyite, it leaves some oxygen atoms insufficiently bonded. Thus, these oxygens are hydrated easily, allowing for high concentrations of hydr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mantle Transition Zone
The transition zone is the part of Earth's mantle that is located between the lower and the upper mantle, most strictly between the seismic-discontinuity depths of about , but more broadly defined as the zone encompassing those discontinuities, i.e., between about depth. Earth's solid, rocky mantle, including the mantle transition zone (often abbreviated as MTZ), consists primarily of peridotite, an ultramafic igneous rock. The mantle was divided into the upper mantle, transition zone, and lower mantle as a result of sudden seismic-velocity discontinuities at depths of . This is thought to occur as a result of rearrangement of grains in olivine (which constitutes a large portion of peridotite) at a depth of , to form a denser crystal structure as a result of the increase in pressure with increasing depth. Below a depth of , evidence suggests due to pressure changes ringwoodite minerals change into two new denser phases, bridgmanite and periclase. This can be seen using bo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tibetan Plateau
The Tibetan Plateau, also known as the Qinghai–Tibet Plateau or Qingzang Plateau, is a vast elevated plateau located at the intersection of Central Asia, Central, South Asia, South, and East Asia. Geographically, it is located to the north of Himalayas and the Indian subcontinent, and to the south of Tarim Basin and Mongolian Plateau. Geopolitically, it covers most of the Tibet Autonomous Region, most of Qinghai, western half of Sichuan, Southern Gansu provinces, southern Xinjiang province in Western China, Bhutan, the Administrative divisions of India, Indian regions of Ladakh and Lahaul and Spiti district, Lahaul and Spiti (Himachal Pradesh) as well as Gilgit-Baltistan in Pakistan, northwestern Nepal, eastern Tajikistan and southern Kyrgyzstan. It stretches approximately north to south and east to west. It is the world's highest and largest plateau above sea level, with an area of . With an average elevation exceeding and being surrounded by imposing mountain ranges that har ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oceanic Crust
Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust lies above the rigid uppermost layer of the mantle. The crust and the rigid upper mantle layer together constitute oceanic lithosphere. Oceanic crust is primarily composed of mafic rocks, or sima, which is rich in iron and magnesium. It is thinner than continental crust, or sial, generally less than 10 kilometers thick; however, it is denser, having a mean density of about 3.0 grams per cubic centimeter as opposed to continental crust which has a density of about 2.7 grams per cubic centimeter. The crust uppermost is the result of the cooling of magma derived from mantle material below the plate. The magma is injected into the spreading center, which consists mainly of a partly solidified crystal mush derive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mohorovičić Discontinuity
The Mohorovičić discontinuity ( ; )usually called the Moho discontinuity, Moho boundary, or just Mohois the boundary between the Earth's crust, crust and the Earth's mantle, mantle of Earth. It is defined by the distinct change in velocity of seismic waves as they pass through changing densities of rock. The Moho lies almost entirely within the lithosphere (the hard outer layer of the Earth, including the crust). Only beneath mid-ocean ridges does it define the lithosphere–asthenosphere boundary (the depth at which the mantle becomes significantly ductile). The Mohorovičić discontinuity is below the ocean floor, and beneath typical continental crusts, with an average of . Named after the pioneering Croats, Croatian seismologist Andrija Mohorovičić, the Moho separates both the oceanic crust and continental crust from the underlying mantle. The Mohorovičić discontinuity was first identified in 1909 by Mohorovičić, when he observed that seismograms from Depth of focus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |