Dual Fluid Reactor
   HOME
*



picture info

Dual Fluid Reactor
The Dual Fluid Reactor is a reactor concept of the Canadian company Dual Fluid Energy Inc. combining the advantages of the molten salt reactor with those of the liquid metal cooled reactor, it is supposed to reach the criteria for reactors of the Generation IV International Forum. The fuel can be a molten solution of actinide chloride salts, or it can be pure liquid actinide metal. The cooling is provided by molten lead in a separate loop. As a fast breeder reactor, the DFR can use both natural uranium and thorium to breed fissile material, as well as recycle processed High-level waste and plutonium. Due to the high thermal conductivity of the molten metal, the Dual Fluid Reactor is an inherently safe reactor (the decay heat can be removed passively). If the reactor works as intended, the U-238 of a spent nuclear fuel element of a LWR (about 1 ton) could be completely dissolved in Cl-salt, including the problematic long-living transuranic parts. Complete breeding and fission could ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Molten Salt Reactor
A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Only two MSRs have ever operated, both research reactors in the United States. The 1950's Aircraft Reactor Experiment was primarily motivated by the compact size that the technique offers, while the 1960's Molten-Salt Reactor Experiment aimed to prove the concept of a nuclear power plant which implements a thorium fuel cycle in a breeder reactor. Increased research into Generation IV reactor designs began to renew interest in the technology, with multiple nations having projects, and , China is on the verge of starting its TMSR-LF1 thorium MSR. MSRs are considered safer than conventional reactors because they operate with fuel already in a molten state, and in some designs in the event of an emergency, the fuel mixture is designed to drain from the core to a containment vessel where it will solidify in fuel drain tanks. This pre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Liquid Metal Cooled Reactor
A liquid metal cooled nuclear reactor, liquid metal fast reactor or LMFR is an advanced type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for nuclear submarine use and have been studied for power generation applications. Metal coolants remove heat more rapidly and allow much higher power density. This makes them attractive in situations where size and weight are at a premium, like on ships and submarines. To improve cooling with water, most reactor designs are highly pressurized to raise the boiling point, which presents safety and maintenance issues that liquid metal designs lack. Additionally, the high temperature of the liquid metal can be used to produce vapour at higher temperature than in a water cooled reactor, leading to a higher thermodynamic efficiency. This makes them attractive for improving power output in conventional nuclear power plants. Liquid metals, being electrically highly conductive, can be m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generation IV International Forum
Generation IV reactors (Gen IV) are six nuclear reactor designs recognized by the Generation IV International Forum. The designs target improved safety, sustainability, efficiency, and cost. The most developed Gen IV reactor design is the sodium fast reactor. It has received the greatest share of funding that supports demonstration facilities, as well as two commercial reactors in Russia. One of these has been in commercial operation since 1981. Its principal Gen IV features relates its sustainable closed fuel cycle. Moir and Teller consider the molten-salt reactor, a less developed technology, as potentially having the greatest inherent safety of the six models. The very-high-temperature reactor designs operate at much higher temperatures than prior generations. This allows for high temperature electrolysis or for sulfur–iodine cycle for the efficient production of hydrogen and the synthesis of carbon-neutral fuels. The first commercial plants are not expected before 2040–2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Actinide
The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. The 1985 IUPAC ''Red Book'' recommends that ''actinoid'' be used rather than ''actinide'', since the suffix ''-ide'' normally indicates a negative ion. However, owing to widespread current use, ''actinide'' is still allowed. Since ''actinoid'' literally means ''actinium-like'' (cf. ''humanoid'' or ''android''), it has been argued for semantic reasons that actinium cannot logically be an actinoid, but IUPAC acknowledges its inclusion based on common usage. All the actinides are f-block elements, except the final one (lawrencium) which is a d-block element. Actinium has sometimes been considered d-block instead of lawrencium, but the class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chloride
The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride salts such as sodium chloride are often very soluble in water.Green, John, and Sadru Damji. "Chapter 3." ''Chemistry''. Camberwell, Vic.: IBID, 2001. Print. It is an essential electrolyte located in all body fluids responsible for maintaining acid/base balance, transmitting nerve impulses and regulating liquid flow in and out of cells. Less frequently, the word ''chloride'' may also form part of the "common" name of chemical compounds in which one or more chlorine atoms are covalently bonded. For example, methyl chloride, with the standard name chloromethane (see IUPAC books) is an organic compound with a covalent C−Cl bond in which the chlorine is not an anion. Electronic properties A chloride ion (diameter 167  pm) is much larger tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lead
Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, lead is a shiny gray with a hint of blue. It tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable element and three of its isotopes are endpoints of major nuclear decay chains of heavier elements. Lead is toxic, even in small amounts, especially to children. Lead is a relatively unreactive post-transition metal. Its weak metallic character is illustrated by its amphoteric nature; lead and lead oxides react with acids and bases, and it tends to form covalent bonds. Compounds of lead are usually found in the +2 oxidation state rather than the +4 state common with lighter members of the carbon group. Exceptions are mostly limited to organolead compounds. Like the lighter members of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fast Breeder Reactor
A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. Breeder reactors achieve this because their neutron economy is high enough to create more fissile fuel than they use, by irradiation of a fertile material, such as uranium-238 or thorium-232, that is loaded into the reactor along with fissile fuel. Breeders were at first found attractive because they made more complete use of uranium fuel than light water reactors, but interest declined after the 1960s as more uranium reserves were found,Helmreich, J.E. ''Gathering Rare Ores: The Diplomacy of Uranium Acquisition, 1943–1954'', Princeton UP, 1986: ch. 10 and new methods of uranium enrichment reduced fuel costs. Fuel efficiency and types of nuclear waste Breeder reactors could, in principle, extract almost all of the energy contained in uranium or thorium, decreasing fuel requirements by a factor of 100 compared to widely used once-through light water reactors, which extract less tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly radioactive because all isotopes of uranium are unstable; the half-lives of its naturally occurring isotopes range between 159,200 years and 4.5 billion years. The most common isotopes in natural uranium are uranium-238 (which has 146 neutrons and accounts for over 99% of uranium on Earth) and uranium-235 (which has 143 neutrons). Uranium has the highest atomic weight of the primordially occurring elements. Its density is about 70% higher than that of lead, and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. In nature, uranium is found as uranium-238 (99. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided. All known thorium isotopes are unstable. The most stable isotope, 232Th, has a half-life of 14.05 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable 208 Pb. On Earth, thorium and uranium are the only significantly radioactive elements that still occur naturally in large quantities as primordial elements. Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High-level Waste
High-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms: * First and second cycle raffinate and other waste streams created by nuclear reprocessing. * Waste formed by vitrification of liquid high-level waste. Liquid high-level waste is typically held temporarily in underground tanks pending vitrification. Most of the high-level waste created by the Manhattan Project and the weapons programs of the cold war exists in this form because funding for further processing was typically not part of the original weapons programs. Both spent nuclear fuel and vitrified waste are considered as suitable forms for long term disposal, after a period of temporary storage in the case of spent nuclear fuel. HLW contains many of the fission products and transuranic elements generated in the reactor core and is the type of nuclear waste with the highest activity. HLW accounts for over 95% of the total radioactivity produce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermal Conductivity
The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity. For instance, metals typically have high thermal conductivity and are very efficient at conducting heat, while the opposite is true for insulating materials like Rockwool or Styrofoam. Correspondingly, materials of high thermal conductivity are widely used in heat sink applications, and materials of low thermal conductivity are used as thermal insulation. The reciprocal of thermal conductivity is called thermal resistivity. The defining equation for thermal conductivity is \mathbf = - k \nabla T, where \mathbf is the heat flux, k is the thermal conductivity, and \nabla T is the temperature gradient. This is known as Fourier's Law for heat conduction. Although commonly expressed as a scalar, the most general form of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DFR Characteristic Properties
DFR may refer to: * Cosworth DFR, a 1987 race car engine * Dean Forest Railway, Gloucestershire, England * Decreasing failure rate * Deutscher Frauenring, a political advocacy organisation in Germany * Dihydroflavonol 4-reductase, an enzyme class * Divergence-from-randomness model, in information retrieval * Dounreay Fast Reactor, Scotland * Dual fluid reactor The Dual Fluid Reactor is a reactor concept of the Canadian company Dual Fluid Energy Inc. combining the advantages of the molten salt reactor with those of the liquid metal cooled reactor, it is supposed to reach the criteria for reactors of the ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]