HOME
*





Denjoy–Carleman–Ahlfors Theorem
The ''Denjoy–Carleman–Ahlfors theorem'' states that the number of asymptotic values attained by a non-constant entire function of order ρ on curves going outwards toward infinite absolute value is less than or equal to 2ρ. It was first conjectured by Arnaud Denjoy in 1907. Torsten Carleman showed that the number of asymptotic values was less than or equal to (5/2)ρ in 1921. In 1929 Lars Ahlfors confirmed Denjoy's conjecture of 2ρ. Finally, in 1933, Carleman published a very short proof. The use of the term "asymptotic value" does not mean that the ratio of that value to the value of the function approaches 1 (as in asymptotic analysis) as one moves along a certain curve, but rather that the function value approaches the asymptotic value along the curve. For example, as one moves along the real axis toward negative infinity, the function \exp(z) approaches zero, but the quotient 0/\exp(z) does not go to 1. Examples The function \exp(z) is of order 1 and has only one asymp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptotic
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity. The word asymptote is derived from the Greek ἀσύμπτωτος (''asumptōtos'') which means "not falling together", from ἀ priv. + σύν "together" + πτωτ-ός "fallen". The term was introduced by Apollonius of Perga in his work on conic sections, but in contrast to its modern meaning, he used it to mean any line that does not intersect the given curve. There are three kinds of asymptotes: ''horizontal'', ''vertical'' and ''oblique''. For curves given by the graph of a function , horizontal asymptotes are horizontal lines that the graph of the function approaches as ''x'' tends to Vertical asymptotes are vertical lines near whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Entire Function
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function. A transcendental entire function is an entire function that is not a polynomial. Properties Every entire function can be represented as a power series f(z) = \sum_^\infty a_n z^n that converges everywhere in the complex plane, hence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arnaud Denjoy
Arnaud Denjoy (; 5 January 1884 – 21 January 1974) was a French mathematician. Biography Denjoy was born in Auch, Gers. His contributions include work in harmonic analysis and differential equations. Henstock–Kurzweil integral, His integral was the first to be able to integrate all derivatives. Among his students is Gustave Choquet. He is also known for the more general Khinchin integral, broad Denjoy integral, or Khinchin integral. Denjoy was an Invited Speaker of the International Congress of Mathematicians, ICM with talk ''Sur une classe d'ensembles parfaits en relation avec les fonctions admettant une dérivée seconde généralisée'' in 1920 at Strasbourg and with talk ''Les equations differentielles periodiques'' in 1950 at Cambridge, Massachusetts. In 1931 he was the president of the Société Mathématique de France. In 1942 he was elected a member of the Académie des sciences and was its president in 1962. Denjoy married in 1923 and was the father of three sons. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Torsten Carleman
Torsten Carleman (8 July 1892, Visseltofta, Osby Municipality – 11 January 1949, Stockholm), born Tage Gillis Torsten Carleman, was a Sweden, Swedish mathematician, known for his results in classical analysis and its applications. As the director of the Mittag-Leffler Institute for more than two decades, Carleman was the most influential mathematician in Sweden. Work The dissertation of Carleman under Erik Albert Holmgren, as well as his work in the early 1920s, was devoted to singular integral equations. He developed the spectral theory of integral operators with ''Carleman kernels'', that is, integral transform, kernels ''K''(''x'', ''y'') such that ''K''(''y'', ''x'') = ''K''(''x'', ''y'') for Almost everywhere, almost every (''x'', ''y''), and : \int , K(x, y) , ^2 dy < \infty for almost every ''x''. In the mid-1920s, Carleman developed the theory of quasi-analytic functions. He proved the necessary and sufficient condition for quasi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arkiv För Matematik, Astronomi Och Fysik
''Arkiv för matematik, astronomi och fysik'' (standard abbreviation ''Ark. Mat. Astr. Fys.'') was a scientific journal edited by the Royal Swedish Academy of Sciences (Kungliga Svenska Vetenskapsakademien).
athi Trust It covered mathematics, and . It started with volume 1 dated 1903/04. The last volume 32 appeared 1945/46. Then the journal was split into: * ''

Lars Ahlfors
Lars Valerian Ahlfors (18 April 1907 – 11 October 1996) was a Finnish mathematician, remembered for his work in the field of Riemann surfaces and his text on complex analysis. Background Ahlfors was born in Helsinki, Finland. His mother, Sievä Helander, died at his birth. His father, Axel Ahlfors, was a professor of engineering at the Helsinki University of Technology. The Ahlfors family was Swedish-speaking, so he first attended the private school Nya svenska samskolan where all classes were taught in Swedish. Ahlfors studied at University of Helsinki from 1924, graduating in 1928 having studied under Ernst Lindelöf and Rolf Nevanlinna. He assisted Nevanlinna in 1929 with his work on Denjoy's conjecture on the number of asymptotic values of an entire function. In 1929 Ahlfors published the first proof of this conjecture, now known as the Denjoy–Carleman–Ahlfors theorem. It states that the number of asymptotic values approached by an entire function of order ρ along c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annales Academiae Scientiarum Fennicae
''Annales Fennici Mathematici'' (formerly ''Annales Academiæ Scientiarum Fennicæ Mathematica'' and ''Annales Academiæ Scientiarum Fennicæ'') is a peer-reviewed scientific journal published by the Finnish Academy of Science and Letters since 1941. Its founder and editor until 1974 was Pekka Myrberg. It is currently edited by Olli Martio. It publishes research papers in all domains of mathematics, with particular emphasis on analysis. The journal acquired its current name in 2021. Abstracting and indexing The journal is indexed and abstracted in the following bibliographic database A bibliographic database is a database of bibliographic records, an organized digital collection of references to published literature, including journal and newspaper articles, conference proceedings, reports, government and legal publications, ...s: References External links * Mathematics journals Academic journals established in 1941 Biannual journals Magazines published in Helsinki
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sine Integral
In mathematics, trigonometric integrals are a family of integrals involving trigonometric functions. Sine integral The different sine integral definitions are \operatorname(x) = \int_0^x\frac\,dt \operatorname(x) = -\int_x^\infty\frac\,dt~. Note that the integrand is the sinc function, and also the zeroth spherical Bessel function. Since is an even entire function (holomorphic over the entire complex plane), is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, is the antiderivative of whose value is zero at , and is the antiderivative whose value is zero at . Their difference is given by the Dirichlet integral, \operatorname(x) - \operatorname(x) = \int_0^\infty\frac\,dt = \frac \quad \text \quad \operatorname(x) = \frac + \operatorname(x) ~. In signal processing, the oscillations of the sine integral cause overshoot and ringing artifacts when using the sinc filter, and frequency domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analytic Geometry
In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and also in aviation, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including algebraic, differential, discrete and computational geometry. Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and circles, often in two and sometimes three dimensions. Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space. As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometric shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. That the algebra of the real numbers can be emplo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]