Dirichlet Eta Function
In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0: \eta(s) = \sum_^ = \frac - \frac + \frac - \frac + \cdots. This Dirichlet series is the alternating sum corresponding to the Dirichlet series expansion of the Riemann zeta function, ''ζ''(''s'') — and for this reason the Dirichlet eta function is also known as the alternating zeta function, also denoted ''ζ''*(''s''). The following relation holds: \eta(s) = \left(1-2^\right) \zeta(s) Both the Dirichlet eta function and the Riemann zeta function are special cases of polylogarithms. While the Dirichlet series expansion for the eta function is convergent only for any complex number ''s'' with real part > 0, it is Abel summable for any complex number. This serves to define the eta function as an entire function. (The above relation and the facts that the eta function is entire and \eta( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edmund Landau
Edmund Georg Hermann Landau (14 February 1877 – 19 February 1938) was a German mathematician who worked in the fields of number theory and complex analysis. Biography Edmund Landau was born to a Jewish family in Berlin. His father was Leopold Landau, a gynecologist, and his mother was Johanna Jacoby. Landau studied mathematics at the University of Berlin, receiving his doctorate in 1899 and his habilitation (the post-doctoral qualification required to teach in German universities) in 1901. His doctoral thesis was 14 pages long. In 1895, his paper on scoring chess tournaments is the earliest use of eigenvector centrality. Landau taught at the University of Berlin from 1899 to 1909, after which he held a chair at the University of Göttingen. He married Marianne Ehrlich, the daughter of the Nobel Prize-winning biologist Paul Ehrlich, in 1905. At the 1912 International Congress of Mathematicians Landau listed four problems in number theory about primes that he said were pa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grandi's Series
In mathematics, the infinite series , also written : \sum_^\infty (-1)^n is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge. However, though it is divergent, it can be manipulated to yield a number of mathematically interesting results. For example, many summation methods are used in mathematics to assign numerical values even to a divergent series. For example, the Cesàro summation and the Ramanujan summation of this series are both . Nonrigorous methods One obvious method to find the sum of the series : 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + \ldots would be to treat it like a telescoping series and perform the subtractions in place: : (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + \ldots = 0 + 0 + 0 + 0 + \ldots = 0. On the other hand, a similar bracketing procedure leads to the a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abel Summation
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canadian Mathematical Society
The Canadian Mathematical Society (CMS; French: ''Société mathématique du Canada'') is an association of professional mathematicians dedicated to advancing mathematical research, outreach, scholarship and education in Canada. The Society serves the national and international communities through the publication of high-quality academic journals and community bulletins, as well as by organizing a variety of mathematical competitions and enrichment programs. These include the Canadian Open Mathematics Challenge (COMC), the Canadian Mathematical Olympiad (CMO), and the selection and training of Canada's team for the International Mathematical Olympiad (IMO) and the European Girls’ Mathematical Olympiad (EGMO). The CMS was originally conceived in June 1945 as the Canadian Mathematical Congress. A name change was debated for many years; ultimately, a new name was adopted in 1979, upon the Society’s incorporation as a non-profit charitable organization. The Society is affi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chebyshev Polynomials
The Chebyshev polynomials are two sequences of orthogonal polynomials related to the cosine and sine functions, notated as T_n(x) and U_n(x). They can be defined in several equivalent ways, one of which starts with trigonometric functions: The Chebyshev polynomials of the first kind T_n are defined by T_n(\cos \theta) = \cos(n\theta). Similarly, the Chebyshev polynomials of the second kind U_n are defined by U_n(\cos \theta) \sin \theta = \sin\big((n + 1)\theta\big). That these expressions define polynomials in \cos\theta is not obvious at first sight but can be shown using de Moivre's formula (see below). The Chebyshev polynomials are polynomials with the largest possible leading coefficient whose absolute value on the interval is bounded by 1. They are also the "extremal" polynomials for many other properties. In 1952, Cornelius Lanczos showed that the Chebyshev polynomials are important in approximation theory for the solution of linear systems; the roots of , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peter Borwein
Peter Benjamin Borwein (born St. Andrews, Scotland, May 10, 1953 – 23 August 2020) was a Canadian mathematician and a professor at Simon Fraser University. He is known as a co-author of the paper which presented the Bailey–Borwein–Plouffe algorithm (discovered by Simon Plouffe) for computing π. First interest in mathematics Borwein was born into a Jewish family. He became interested in number theory and classical analysis during his second year of university. He had not previously been interested in math, although his father was the head of the University of Western Ontario's mathematics department and his mother is associate dean of medicine there. Borwein and his two siblings majored in mathematics. Academic career After completing a Bachelor of Science in Honours Math at the University of Western Ontario in 1974, he went on to complete an MSc and Ph.D. at the University of British Columbia. He joined the Department of Mathematics at Dalhousie University. Wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forward Difference
A finite difference is a mathematical expression of the form . Finite differences (or the associated difference quotients) are often used as approximations of derivatives, such as in numerical differentiation. The difference operator, commonly denoted \Delta, is the operator that maps a function to the function \Delta /math> defined by \Delta x) = f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for approximating derivatives, and the term "finite difference" is often used as an abbreviation of "finite difference approximation of derivatives". Finite differences were introduced by Brook Taylor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binomial Transform
In combinatorics, the binomial transform is a sequence transformation (i.e., a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial transform to the sequence associated with its ordinary generating function. Definition The binomial transform, , of a sequence, , is the sequence defined by s_n = \sum_^n (-1)^k \binom a_k. Formally, one may write s_n = (Ta)_n = \sum_^n T_ a_k for the transformation, where is an infinite-dimensional operator with matrix elements . The transform is an involution, that is, TT = 1 or, using index notation, \sum_^\infty T_ T_ = \delta_ where \delta_ is the Kronecker delta. The original series can be regained by a_n=\sum_^n (-1)^k \binom s_k. The binomial transform of a sequence is just the -th forward differences of the sequence, with odd differences carrying a negative sign, namely: \begin s_0 &= a_0 \\ s_1 &= - (\Delta a)_0 = -a_1+a_0 \\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alternating Series
In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed \sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n with for all . Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms converge to 0 monotonically, but this condition is not necessary for convergence. Examples The geometric series − + − + ⋯ sums to . The alternating harmonic series has a finite sum but the harmonic series does not. The series 1-\frac+\frac-\ldots=\sum_^\infty\frac converges to \frac, but is not absolutely convergent. The Mercator series provides an analytic power series expression of the natural logarithm, given by \sum_^\infty \frac x^n = \ln (1+x),\;\;\;, x, \le1, x\ne-1. The functions si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Series Acceleration
Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in serialism including tone rows * Harmonic series (music) * Serialism, including the twelve-tone technique Types of series in arts, entertainment, and media * Anime series * Book series * Comic book series * Film series * Manga series * Podcast series * Radio series * Television series * "Television series", the Australian, British, and a number of others countries' equivalent term for the North American " television season", a set of episodes produced by a television serial * Video game series * Web series Mathematics and science * Series (botany), a taxonomic rank between genus and species * Series (mathematics), the sum of a sequence of terms * Series (stratigraphy), a stratigraphic unit deposited during a certain i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |