Density Topology
   HOME





Density Topology
In mathematics, the density topology on the real numbers is a topology on the real line that is different (strictly finer), but in some ways analogous, to the usual topology. It is sometimes used in real analysis to express or relate properties of the Lebesgue measure in topological terms. Definition Let U \subseteq \mathbb be a Lebesgue-measurable set. By the Lebesgue density theorem, almost every point x of U is a density point of U, i.e., satisfies :\frac \ \underset \ 1 where \lambda is the Lebesgue measure and (x-h,x+h) is the open interval of length 2h centered at x. When ''all'' points of U are density points of U, it is said to be density open. It can be shown that the density open sets of \mathbb form a topology (in other words, they are stable under arbitrary unions and finite intersections): this constitutes the density topology. Examples Every open set in the usual topology of \mathbb (i.e., a union of open intervals) is density open, but the converse is not t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nowhere Dense Set
In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywhere. For example, the integers are nowhere dense among the reals, whereas the interval (0, 1) is not nowhere dense. A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the Baire category theorem, which is used in the proof of several fundamental results of functional analysis. Definition Density nowhere can be characterized in different (but equivalent) ways. The simplest definition is the one from density: A subset S of a topological space X is said to be ''dense'' in another set U if the intersection S \cap U is a dense subset of U. S is or in X if S is not dense in any nonempty open subset U of X. Expanding out the negation of density, it is equivalent that ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximately Continuous
In mathematics, particularly in mathematical analysis and measure theory, an approximately continuous function is a concept that generalizes the notion of continuous functions by replacing the limit of a function, ordinary limit with an approximate limit. This generalization provides insights into measurable functions with applications in real analysis and geometric measure theory. Definition Let E \subseteq \mathbb^n be a Lebesgue measurable set, f\colon E \to \mathbb^k be a measurable function, and x_0 \in E be a point where the Lebesgue density of E is 1. The function f is said to be ''approximately continuous'' at x_0 if and only if the approximate limit of f at x_0 exists and equals f(x_0). Properties A fundamental result in the theory of approximately continuous functions is derived from Lusin's theorem, which states that every measurable function is approximately continuous at almost every point of its domain. The concept of approximate continuity can be extended beyond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, and analysis, in particular functional analysis. For more motivation and applications, see the article Baire category theorem. The current article focuses more on characterizations and basic properties of Baire spaces per se. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Open Set
A subset S of a topological space X is called a regular open set if it is equal to the interior of its closure; expressed symbolically, if \operatorname(\overline) = S or, equivalently, if \partial(\overline)=\partial S, where \operatorname S, \overline and \partial S denote, respectively, the interior, closure and boundary of S.Steen & Seebach, p. 6 A subset S of X is called a regular closed set if it is equal to the closure of its interior; expressed symbolically, if \overline = S or, equivalently, if \partial(\operatornameS)=\partial S. Examples If \Reals has its usual Euclidean topology then the open set S = (0,1) \cup (1,2) is not a regular open set, since \operatorname(\overline) = (0,2) \neq S. Every open interval in \R is a regular open set and every non-degenerate closed interval (that is, a closed interval containing at least two distinct points) is a regular closed set. A singleton \ is a closed subset of \R but not a regular closed set because its interior is the emp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Set
In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space ''X'', the collection of all Borel sets on ''X'' forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on ''X'' is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts, Borel sets are defined to be generated by the compact sets of the topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Null Set
In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null set should not be confused with the empty set as defined in set theory. Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space M = (X, \Sigma, \mu) a null set is a set S \in \Sigma such that \mu(S) = 0. Examples Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers , the set of rational numbers and the set of algebraic numbers are all countably infinite and therefore are null sets when considered as subsets of the real numbers. The Cantor set is an example of an uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Meagre Set
In the mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ... field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or Negligible set, negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms. The meagre subsets of a fixed space form a Sigma-ideal, σ-ideal of subsets; that is, any subset of a meagre set is meagre, and the union (set theory), union of Countable set, countably many meagre sets is meagre. Meagre sets play an important role in the formulation of the notion of Baire space and of the Baire category theorem, which is used in the proof of several fundamental results ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Space
Normal(s) or The Normal(s) may refer to: Film and television * Normal (2003 film), ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * Normal (2007 film), ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * Normal (2009 film), ''Normal'' (2009 film), an adaptation of Anthony Neilson's 1991 play ''Normal: The Düsseldorf Ripper'' * ''Normal!'', a 2011 Algerian film * The Normals (film), ''The Normals'' (film), a 2012 American comedy film * Normal (New Girl), "Normal" (''New Girl''), an episode of the TV series Mathematics * Normal (geometry), an object such as a line or vector that is perpendicular to a given object * Normal basis (of a Galois extension), used heavily in cryptography * Normal bundle * Normal cone, of a subscheme in algebraic geometry * Normal coordinates, in differential geometry, local coordinates obtained from the exponential map (Riemannian geometry) * Normal distribution, the Gaussian continuo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]