Deduction Theorem
In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs from a hypothesis in systems that do not explicitly axiomatize that hypothesis, i.e. to prove an implication A \to B, it is sufficient to assume A as a hypothesis and then proceed to derive B. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction. In more detail, the propositional logic deduction theorem states that if a formula B is deducible from a set of assumptions \Delta \cup \ then the implication A \to B is deducible from \Delta ; in symbols, \Delta \cup \ \vdash B implies \Delta \vdash A \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Logic
In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manipulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an observation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure. A number of other logics have also been proposed to analyze quantum-mechanical phenomena, unfortunately also under the name of "quantum logic(s)". They are not the subject of this article. For discussion of the similarities and differences between quantum logic and some of these competitors, see '. Quantum logic has been proposed as the correct logic for propositional inference generally, most notably by the philosopher Hilary Putnam, at least at one point in his career. This ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduction rules. An element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an " axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peirce's Law
In logic, Peirce's law is named after the philosopher and logician Charles Sanders Peirce. It was taken as an Axiom#Mathematics, axiom in his first axiomatisation of propositional logic. It can be thought of as the law of excluded middle written in a form that involves only one sort of connective, namely implication. In propositional calculus, Peirce's law says that ((''P''→''Q'')→''P'')→''P''. Written out, this means that ''P'' must be true if there is a proposition ''Q'' such that the truth of ''P'' Logical consequence, follows from the truth of "if ''P'' then ''Q''". Peirce's law does not hold in intuitionistic logic or intermediate logics and cannot be deduced from the deduction theorem alone. Under the Curry–Howard isomorphism, Peirce's law is the type of continuation operators, e.g. call/cc in Scheme (programming language), Scheme. v \end \end and where Peirce's law as a formula can be simplified to: : \begin ((u \mathrel v) \ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatory Logic
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments. In mathematics Combinatory logic was originally intended as a 'pre-logic' that would clarify the role of quantified variables in logic, essentially by eliminating them. Another way of eliminating quantified variables is Quine's predicate functor logic. While the expressive power of combinatory log ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lambda Calculus
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using variable Name binding, binding and Substitution (algebra), substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was #History, logically consistent, and documented it in 1940. Lambda calculus consists of constructing #Lambda terms, lambda terms and performing #Reduction, reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatory Logic
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators, which were introduced by Schönfinkel in 1920 with the idea of providing an analogous way to build up functions—and to remove any mention of variables—particularly in predicate logic. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments. In mathematics Combinatory logic was originally intended as a 'pre-logic' that would clarify the role of quantified variables in logic, essentially by eliminating them. Another way of eliminating quantified variables is Quine's predicate functor logic. While the expressive power of combinatory log ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Meta-theorem
In logic, a metatheorem is a statement about a formal system proven in a metalanguage. Unlike theorems proved within a given formal system, a metatheorem is proved within a metatheory, and may reference concepts that are present in the metatheory but not the object theory. A formal system is determined by a formal language and a deductive system (axioms and rules of inference). The formal system can be used to prove particular sentences of the formal language with that system. Metatheorems, however, are proved externally to the system in question, in its metatheory. Common metatheories used in logic are set theory (especially in model theory) and primitive recursive arithmetic (especially in proof theory). Rather than demonstrating particular sentences to be provable, metatheorems may show that each of a broad class of sentences can be proved, or show that certain sentences cannot be proved. Examples Examples of metatheorems include: * The deduction theorem for first-order logic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curry–Howard Correspondence
In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs. It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation. It is a generalization of a syntactic analogy between systems of formal logic and computational calculi that was first discovered by the American mathematician Haskell Curry and the logician William Alvin Howard. It is the link between logic and computation that is usually attributed to Curry and Howard, although the idea is related to the operational interpretation of intuitionistic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and Andrey Kolmogorov (see Brouwer–Heyting–Kolmogorov interpretation) and Stephen Kleene (see Realizability). The relationship has been extended to include category theory as the three-way Curry–Howard–Lambe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tautology (logic)
In mathematical logic, a tautology (from ) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Schema
In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variables appear. These variables, which are metalinguistic constructs, stand for any term or subformula of the system, which may or may not be required to satisfy certain conditions. Often, such conditions require that certain variables be free, or that certain variables not appear in the subformula or term. Examples Two well known instances of axiom schemata are the: * induction schema that is part of Peano's axioms for the arithmetic of the natural numbers; * axiom schema of replacement that is part of the standard ZFC axiomatization of set theory. Czesław Ryll-Nardzewski proved that Peano arithmetic cannot be finitely axiomatized, and Richard Montague proved that ZFC cannot be finitely axiomatized. Hence, the axiom schemata cannot be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Notation
In linguistics and semiotics, a notation system is a system of graphics or symbols, Character_(symbol), characters and abbreviated Expression (language), expressions, used (for example) in Artistic disciplines, artistic and scientific disciplines to represent technical facts and quantities by Convention (norm), convention. Therefore, a notation is a collection of related symbols that are each given an arbitrary meaning, created to facilitate structured communication within a domain knowledge or field of study. Standard notations refer to general agreements in the way things are written or denoted. The term is generally used in technical and scientific areas of study like mathematics, physics, chemistry and biology, but can also be seen in areas like business, economics and music. Written communication Writing systems * Phonographic writing systems, by definition, use symbols to represent components of auditory language, i.e. speech, which in turn refers to things or ideas. The t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |