Conway Group
   HOME
*





Conway Group
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of automorphisms of the Leech lattice Λ with respect to addition and inner product. It has order : but it is not a simple group. The simple group Co1 of order : =  221395472111323 is defined as the quotient of Co0 by its center, which consists of the scalar matrices ±1. The groups Co2 of order : =  218365371123 and Co3 of order : =  210375371123 consist of the automorphisms of Λ fixing a lattice vector of type 2 and type 3, respectively. As the scalar −1 fixes no non-zero vector, these two groups are isomorphic to subgroups of Co1. The inner product on the Leech lattice is defined as 1/8 the sum of the products of respective co-ordinates of the two multiplicand vectors; it is an integer. The square norm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conway Group Co2
In the area of modern algebra known as group theory, the Conway group ''Co2'' is a sporadic simple group of order :   218365371123 : = 42305421312000 : ≈ 4. History and properties ''Co2'' is one of the 26 sporadic groups and was discovered by as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0. The Schur multiplier and the outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a t ... are both Trivial group, trivial. Representations Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices. Co2 act ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higman–Sims Group
In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order :   29⋅32⋅53⋅7⋅11 = 44352000 : ≈ 4. The Schur multiplier has order 2, the outer automorphism group has order 2, and the group 2.HS.2 appears as an involution centralizer in the Harada–Norton group. History HS is one of the 26 sporadic groups and was found by . They were attending a presentation by Marshall Hall on the Hall–Janko group J2. It happens that J2 acts as a permutation group on the Hall–Janko graph of 100 points, the stabilizer of one point being a subgroup with two other orbits of lengths 36 and 63. Inspired by this they decided to check for other rank 3 permutation groups on 100 points. They soon focused on a possible one containing the Mathieu group M22, which has permutation representations on 22 and 77 points. (The latter representation arises because the M22 Steiner system has 77 blocks.) By putting toge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conway Group Co1
In the area of modern algebra known as group theory, the Conway group ''Co1'' is a sporadic simple group of order :   221395472111323 : = 4157776806543360000 : ≈ 4. History and properties ''Co1'' is one of the 26 sporadic groups and was discovered by John Horton Conway in 1968. It is the largest of the three sporadic Conway groups and can be obtained as the quotient of ''Co0'' ( group of automorphisms of the Leech lattice Λ that fix the origin) by its center, which consists of the scalar matrices ±1. It also appears at the top of the automorphism group of the even 26-dimensional unimodular lattice II25,1. Some rather cryptic comments in Witt's collected works suggest that he found the Leech lattice and possibly the order of its automorphism group in unpublished work in 1940. The outer automorphism group is trivial and the Schur multiplier has order 2. Involutions Co0 has 4 conjugacy classes of involutions; these collapse to 2 in Co1, but there are 4-eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation Matrices
In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say , represents a permutation of elements and, when used to multiply another matrix, say , results in permuting the rows (when pre-multiplying, to form ) or columns (when post-multiplying, to form ) of the matrix . Definition Given a permutation of ''m'' elements, :\pi : \lbrace 1, \ldots, m \rbrace \to \lbrace 1, \ldots, m \rbrace represented in two-line form by :\begin 1 & 2 & \cdots & m \\ \pi(1) & \pi(2) & \cdots & \pi(m) \end, there are two natural ways to associate the permutation with a permutation matrix; namely, starting with the ''m'' × ''m'' identity matrix, , either permute the columns or permute the rows, according to . Both methods of defining permutation matrices appear in the literature and the properties expressed in one representation can be easily converted to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




McLaughlin Group (mathematics)
In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order :   27 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11 = 898,128,000 : ≈ 9. History and properties McL is one of the 26 sporadic groups and was discovered by as an index 2 subgroup of a rank 3 permutation group acting on the McLaughlin graph with vertices. It fixes a 2-2-3 triangle in the Leech lattice and thus is a subgroup of the Conway groups \mathrm_0, \mathrm_2, and \mathrm_3. Its Schur multiplier has order 3, and its outer automorphism group has order 2. The group 3.McL:2 is a maximal subgroup of the Lyons group. McL has one conjugacy class of involution (element of order 2), whose centralizer is a maximal subgroup of type 2.A8. This has a center of order 2; the quotient modulo the center is isomorphic to the alternating group A8. Representations In the Conway group Co3, McL has the normalizer McL:2, which is maximal in Co3. McL has 2 cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Golay Code
In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, the "best single published page" in coding theory. There are two closely related binary Golay codes. The extended binary Golay code, ''G''24 (sometimes just called the "Golay code" in finite group theory) encodes 12 bits of data in a 24-bit word in such a way that any 3-bit errors can be corrected or any 7-bit errors can be detected. The other, the perfect binary Golay code, ''G''23, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position (conversely, the extended binary Golay code is obtained from t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^. for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \operatorna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^. for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \operatorna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto -x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = a_ + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if a_ denotes the entry in the ith row and jth column then for all indices i and j. Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Permutation Matrix
In mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is :\begin 0 & 0 & 3 & 0\\ 0 & -7 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \sqrt2\end. Structure An invertible matrix ''A'' is a generalized permutation matrix if and only if it can be written as a product of an invertible diagonal matrix ''D'' and an (implicitly invertible) permutation matrix ''P'': i.e., :A = DP. Group structure The set of ''n'' × ''n'' generalized permutation matrices with entries in a field ''F'' forms a subgroup of the general linear group GL(''n'', ''F''), in which the group of nonsingular diagonal matrices Δ(''n'', ''F'') forms a normal subgroup. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]