Red Giants
   HOME



picture info

Red Giants
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars. Red giants vary in the way by which they generate energy: * most common red giants are stars on the red-giant branch (RGB) that are still fusing hydrogen into helium in a shell surrounding an inert helium core * red-clump stars in the cool half of the horizontal branch, fusing helium into carbon in their cores via the triple-alpha process * asymptotic-giant-branch (AGB) stars with a helium burning shell outside a degenerate carbon–oxygen core, and a hydrogen-burning shell just beyond that. Many of the well-known bright stars are red giants because they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Red Giant Simulation 4 (cropped)
Red is the color at the long wavelength end of the visible spectrum of light, next to Orange (colour), orange and opposite Violet (color), violet. It has a dominant wavelength of approximately 625–750 nanometres. It is a primary color in the RGB color model and a secondary color (made from magenta and yellow) in the CMYK color model, and is the complementary color of cyan. Reds range from the brilliant yellow-tinged Scarlet (color), scarlet and Vermilion, vermillion to bluish-red crimson, and vary in shade from the pale red pink to the dark red burgundy (color), burgundy. Red pigment made from ochre was one of the first colors used in prehistoric art. The Ancient Egyptians and Mayan civilization, Mayans colored their faces red in ceremonies; Roman Empire, Roman generals had their bodies colored red to celebrate victories. It was also an important color in China, where it was used to color early pottery and later the gates and walls of palaces. In the Renaissance, the brillian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gacrux
Gacrux is the third-brightest star in the southern constellation of Crux, the Southern Cross. It has the Bayer designation Gamma Crucis, which is Latinised from γ Crucis and abbreviated Gamma Cru or γ Cru. With an apparent visual magnitude of +1.63, it is the 26th brightest star in the night sky. A line from the two "Pointers", Alpha Centauri through Beta Centauri, leads to within 1° north of this star. Using parallax measurements made during the Hipparcos mission, it is distant. It is the nearest M-type red giant star. Nomenclature ''γ Crucis'' (Latinised to ''Gamma Crucis'') is the star's Bayer designation. Gacrux is currently at roughly 60° south declination. It was known and visible to the ancient Greeks and Romans as it was visible north of 40° latitude because of the precession of equinoxes. Oddly, it lacked a traditional name. The astronomer Ptolemy counted it as part of the constellation of Centaurus. The name ''Gacrux'' was coined by astronomer Elija ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Molecular Lines
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules. These "fingerprints" can be compared to the previously collected ones of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets, which would otherwise be impossible. Types of line spectra Spectral lines are the result of interaction between a quantum system (usually atoms, but sometimes molecules or atomic nuclei) and a single photon. When a photon has about the right amount of energy (which is connected to its frequency) to allow a change in the energy state of the system (in the case of an atom this is usually an electron changing orbitals), the photon is absorbed. Then the energy will be spontaneously re-emitted, either as one photon at the same fre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Corona
In astronomy, a corona (: coronas or coronae) is the outermost layer of a star's Stellar atmosphere, atmosphere. It is a hot but relatively luminosity, dim region of Plasma (physics), plasma populated by intermittent coronal structures such as solar prominence, prominences, coronal loops, and helmet streamers. The Sun's corona lies above the chromosphere and extends millions of kilometres into outer space. Coronal light is typically obscured by diffuse sky radiation and Glare (vision), glare from the solar disk, but can be easily seen by the naked eye during a total solar eclipse or with a specialized coronagraph. Spectroscopic measurements indicate strong ionization in the corona and a plasma temperature in excess of , much hotter than the surface of the Sun, known as the photosphere. is, in turn, derived . History In 1724, French-Italian astronomer Giacomo F. Maraldi recognized that the aura visible during a solar eclipse belongs to the Sun, not to the Moon. In 1809, Span ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Photosphere
The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will escape without being scattered. A photosphere is the region of a luminous object, usually a star, that is transparent to photons of certain wavelengths. Stars, except neutron stars, have no solid or liquid surface. Therefore, the photosphere is typically used to describe the Sun's or another star's visual surface. Etymology The term ''photosphere'' is derived from Ancient Greek roots, φῶς, φωτός/''phos'', ''photos'' meaning "light" and σφαῖρα/''sphaira'' meaning "sphere", in reference to it being a spherical surface that is perceived to emit light. Temperature The surface of a star is defined to have a temperature given by the effective temperature in the Stefan–Boltzmann law. Various stars have photospheres of vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Astrophysical Journal
''The Astrophysical Journal'' (''ApJ'') is a peer-reviewed scientific journal of astrophysics and astronomy, established in 1895 by American astronomers George Ellery Hale and James Edward Keeler. The journal discontinued its print edition and became an electronic-only journal in 2015. Since 1953, ''The Astrophysical Journal Supplement Series'' (''ApJS'') has been published in conjunction with ''The Astrophysical Journal'', with generally longer articles to supplement the material in the journal. It publishes six volumes per year, with two 280-page issues per volume. ''The Astrophysical Journal Letters'' (''ApJL''), established in 1967 by Subrahmanyan Chandrasekhar as Part 2 of ''The Astrophysical Journal'', is now a separate journal focusing on the rapid publication of high-impact astronomical research. The three journals were published by the University of Chicago Press for the American Astronomical Society until, in January 2009, publication was transferred to IOP Publis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dredge-up
A dredge-up is any one of several stages in the evolution of some stars. By definition, during a ''dredge-up'', a convection zone extends all the way from the star's surface down to the layers of material that have undergone fusion. Consequently, the fusion products are mixed into the outer layers of the star's atmosphere, where they can be seen in stellar spectra. Multiple stages *;''The first dredge-up'': The first dredge-up occurs when a main-sequence star enters the red-giant branch. As a result of the convective mixing, the outer atmosphere will display the spectral signature of hydrogen fusion: The C/ C and C/ N ratios are lowered, and the surface abundances of lithium and beryllium may be reduced. The counter-intuitive existence of lithium-rich red giant stars that have gone through first dredge-up may be explained by scenarios such as mass transfer. *;''The second dredge-up'': The second dredge-up occurs in stars with 4–8  solar masses. When helium fusion co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carbon Stars
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "sooty" atmosphere and a strikingly ruby red appearance. There are also some dwarf and supergiant carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them. In most stars (such as the Sun), the atmosphere is richer in oxygen than carbon. Ordinary stars not exhibiting the characteristics of carbon stars but cool enough to form carbon monoxide are therefore called oxygen-rich stars. Carbon stars have quite distinctive spectral characteristics, and they were first recognized by their spectra by Angelo Secchi in the 1860s, a pioneering time in astronomical spectroscopy. Spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptotic-giant-branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives. Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars). Stellar evolution When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer lay ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sun's Photosphere
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth. The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity. The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years. Its distance from Earth defines the astronomical unit, which is about or about 8 light-minutes. Its diameter is about (), 109 times that of Earth. The Sun's mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. The mass of outer layer of the Sun's atmosphere, its ''photosphere'', consists mostly of hydrogen (~73%) and helium (~25%), with much smaller ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solar Radius
Solar radius is a unit of distance used to express the size of objects in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3: 1\,R_ = 6.957\times 10^8 \hbox is approximately 10 times the average radius of Jupiter, 109 times the radius of the Earth, and 1/215 of an astronomical unit, the approximate distance between Earth and the Sun. The solar radius to either pole and that to the equator differ slightly due to the Sun's rotation, which induces an oblateness in the order of 10 parts per million. Measurements The uncrewed SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of . Haberreiter, Schmutz & Kosovichev (2008) determined the radius corresponding to the solar photosphere to be . This new value is consistent with helioseismic estimates; the same study sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermonuclear Fusion
Nuclear fusion is a reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutron by-products. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises as a result of the difference in nuclear binding energy between the atomic nuclei before and after the fusion reaction. Nuclear fusion is the process that powers all active stars, via many reaction pathways. Fusion processes require an extremely large triple product of temperature, density, and confinement time. These conditions occur only in stellar cores, advanced nuclear weapons, and are approached in fusion power experiments. A nuclear fusion process that produces atomic nuclei lighter than nickel-62 is generally exothermic, due to the positive gradient of the nuclear binding energy curve. The most fusible nuclei are among the lightest, especially deuterium, tritium, and helium-3. The oppo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]