Random Graphs
   HOME





Random Graphs
In mathematics, random graph is the general term to refer to probability distributions over Graph (discrete mathematics), graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of ''typical'' graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, ''random graph'' refers almost exclusively to the Erdős–Rényi model, Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a ''random graph''. Models A random graph is obtained by starting with a set of ''n'' isolated vertices and add ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dot Product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. Not to be confused with scalar multiplication. is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two Euclidean vector, vectors is widely used. It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see ''Inner product space'' for more). It should not be confused with the cross product. Algebraically, the dot product is the sum of the Product (mathematics), products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Tree
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no :wikt:order, order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if there is a known probability distribution, the frequency of different outcomes over repeated events (or "trials") is predictable.Strictly speaking, the frequency of an outcome will converge almost surely to a predictable value as the number of trials becomes arbitrarily large. Non-convergence or convergence to a different value is possible, but has probability zero. Consistent non-convergence is thus evidence of the lack of a fixed probability distribution, as in many evolutionary processes. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4. In this view, randomness is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Polynomial
The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem. It was generalised to the Tutte polynomial by Hassler Whitney and W. T. Tutte, linking it to the Potts model of statistical physics. History George David Birkhoff introduced the chromatic polynomial in 1912, defining it only for planar graphs, in an attempt to prove the four color theorem. If P(G, k) denotes the number of proper colorings of ''G'' with ''k'' colors then one could establish the four color theorem by showing P(G, 4)>0 for all planar graphs ''G''. In this way he hoped to apply the powerful tools of analysis and algebra for studying the roots of polynomials to the combinatorial coloring problem. Hassler Whitney generalised Birkhoff’s polynomial from the planar case to general graphs in 1932. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greedy Algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to such a complex problem typically requires unreasonably many steps. In mathematical optimization, greedy algorithms optimally solve combinatorial problems having the properties of matroids and give constant-factor approximations to optimization problems with the submodular structure. Specifics Greedy algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alireza Mashaghi
Alireza Mashaghi is a physician-scientist and biophysicist at Leiden University. He is known for his contributions to single-molecule analysis of chaperone assisted protein folding, molecular topology and medical systems biophysics and bioengineering. He is a leading advocate for interdisciplinary research and education in medicine and pharmaceutical sciences. Mashaghi made the first observation of direct chaperone involvement during folding of a protein, using a single molecule force spectroscopy method. This work which has been published in Nature solved a long-standing puzzle in biology. In 2017, he reported a new model for chaperone DnaK function and made a discovery that, according to Ans Hekkenberg, "overturns the decades-old textbook model of action for a protein that is central for many processes in living cells". He and his co-workers found that chaperone DnaK can recognise natively folded protein parts and thereby promotes protein folding directly. Furthermore, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Cycle
In the mathematics, mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path (graph theory), path in an undirected or directed graph that visits each vertex (graph theory), vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle (graph theory), cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details. Hamiltonian paths and cycles are named after William Rowan Hamilton, who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Regular Graph
A random ''r''-regular graph is a graph selected from \mathcal_, which denotes the probability space of all ''r''-regular graphs on n vertices, where 3 \le r 0 is a positive constant, and d is the least integer satisfying (r-1)^ \ge (2 + \epsilon)rn \ln n then, asymptotically almost surely, a random ''r''-regular graph has diameter at most ''d''. There is also a (more complex) lower bound on the diameter of ''r''-regular graphs, so that almost all ''r''-regular graphs (of the same size) have almost the same diameter. The distribution of the number of short cycles is also known: for fixed m \ge 3, let Y_3,Y_4,...Y_m be the number of cycles of lengths up to m. Then the Y_iare asymptotically independent Poisson random variables with means \lambda_i=\frac Algorithms for random regular graphs It is non-trivial to implement the random selection of ''r''-regular graphs efficiently and in an unbiased way, since most graphs are not regular. The ''pairing model'' (also ''configuration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Szemerédi Regularity Lemma
In extremal graph theory, Szemerédi’s regularity lemma states that a graph can be partitioned into a bounded number of parts so that the edges between parts are regular (in the sense defined below). The lemma shows that certain properties of random graphs can be applied to dense graphs like counting the copies of a given subgraph within graphs. Endre Szemerédi proved the lemma over bipartite graphs for his theorem on arithmetic progressions in 1975 and for general graphs in 1978. Variants of the lemma use different notions of regularity and apply to other mathematical objects like hypergraphs. Statement To state Szemerédi's regularity lemma formally, we must formalize what the edge distribution between parts behaving 'almost randomly' really means. By 'almost random', we're referring to a notion called -regularity. To understand what this means, we first state some definitions. In what follows is a graph with vertex set . Definition 1. Let be disjoint subsets of . The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Probabilistic Method
In mathematics, the probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects from a specified class, the probability that the result is of the prescribed kind is strictly greater than zero. Although the proof uses probability, the final conclusion is determined for ''certain'', without any possible error. This method has now been applied to other areas of mathematics such as number theory, linear algebra, and real analysis, as well as in computer science (e.g. randomized rounding), and information theory. Introduction If every object in a collection of objects fails to have a certain property, then the probability that a random object chosen from the collection has that property is zero. Thus, by contraposition, if the probability that a random object chosen from the collection has that property is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Percolation Theory
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger Glossary of graph theory, connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles Network theory and Percolation (cognitive psychology). Introduction A representative question (and the etymology, source of the name) is as follows. Assume that some liquid is poured on top of some porosity, porous material. Will the liquid be able to make its way from hole to hole and reach the bottom? This physical question is mathematical model, modelled mathematically as a Grid graph, three-dimensional network of graph (discrete mathematics), vertices, usually called "sites", in which the graph (dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connection (mathematics)
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as Tangent vector, tangent vectors or Tensor, tensors in the tangent space, along a curve or family of curves in a ''parallel'' and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent space, tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction. Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]