Graphical Models
   HOME



picture info

Graphical Models
A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. Graphical models are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning. Types of graphical models Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or factorized representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, Bayesian networks and Markov random fields. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that they induce. Undirected Graphical Mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Probabilistic Model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. All statistical hypothesis tests and all statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" ( Herman Adèr quoting Kenneth Bollen). Introduction Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D-separation
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (''e.g.'' speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A directed tree, oriented tree,See .See . polytree,See . or singly connected networkSee . is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an arborescence or out-tree� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique Tree
In graph theory, a tree decomposition is a mapping of a graph into a tree that can be used to define the treewidth of the graph and speed up solving certain computational problems on the graph. Tree decompositions are also called junction trees, clique trees, or join trees. They play an important role in problems like probabilistic inference, constraint satisfaction, query optimization, and matrix decomposition. The concept of tree decomposition was originally introduced by . Later it was rediscovered by and has since been studied by many other authors. Definition Intuitively, a tree decomposition represents the vertices of a given graph as subtrees of a tree, in such a way that vertices in are adjacent only when the corresponding subtrees intersect. Thus, forms a subgraph of the intersection graph of the subtrees. The full intersection graph is a chordal graph. Each subtree associates a graph vertex with a set of tree nodes. To define this formally, we represent each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Belief Propagation
Belief propagation, also known as sum–product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node (or variable), conditional on any observed nodes (or variables). Belief propagation is commonly used in artificial intelligence and information theory, and has demonstrated empirical success in numerous applications, including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability. The algorithm was first proposed by Judea Pearl in 1982, who formulated it as an exact inference algorithm on trees, later extended to polytrees. While the algorithm is not exact on general graphs, it has been shown to be a useful approximate algorithm. Motivation Given a finite set of discrete random variables X_1, \ldots, X_n with joint probability mass function p, a common task is to compute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theory), independent sets U and V, that is, every edge (graph theory), edge connects a Vertex (graph theory), vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycle (graph theory), cycles. The two sets U and V may be thought of as a graph coloring, coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a Gallery of named graphs, triangle: after one node is colored blue and another red, the third vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Graph
A factor graph is a bipartite graph representing the factorization of a function (mathematics), function. In probability theory and its applications, factor graphs are used to represent factorization of a Probability distribution function (other), probability distribution function, enabling efficient computations, such as the computation of marginal distributions through the sum-product algorithm, sum–product algorithm. One of the important success stories of factor graphs and the sum–product algorithm is the code, decoding of capacity-approaching error-correcting codes, such as LDPC and turbo codes. Factor graphs generalize constraint graphs. A factor whose value is either 0 or 1 is called a constraint. A constraint graph is a factor graph where all factors are constraints. The max-product algorithm for factor graphs can be viewed as a generalization of the Local_consistency#Arc_consistency , arc-consistency algorithm for constraint processing. Definition A facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tan Corral
Tan or TAN may refer to: Arts and entertainment * ''Tan'', an album by the Polish rock band Kult * TAN (group), South Korean boy band * ''Tan'' (newspaper), a newspaper in Turkey * ''Tan'' (weekly newspaper), a newspaper in Kosovo Businesses and organisations * TAN Books, a Catholic publishing company * FC Rubin-TAN Kazan, a Russian professional ice hockey club in Kazan in 1991-94 * Transportes Aéreos Nacionales or TAN Airlines, an airline based in Honduras * Semitan or TAN, operates public transport in Nantes, France People * Tan (surname) (譚), a Chinese surname * Chen (surname) (陳), a Chinese surname, pronounced "Tan" in Min Nan languages * Laozi, posthumous name "Tan" or "Dān" (聃), philosopher of ancient China * Leborgne, nicknamed Tan, a patient of Paul Broca's, on whose autopsy he identified Broca's area * TAN (musician) (born 1990), Malaysian pop singer * Tan Sağtürk (born 1969), Turkish ballet dancer * Tan France (born 1983), British-American fashion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dependency Network (graphical Model)
Dependency networks (DNs) are graphical models, similar to Markov networks, wherein each vertex (node) corresponds to a random variable and each edge captures dependencies among variables. Unlike Bayesian networks, DNs may contain cycles. Each node is associated to a conditional probability table, which determines the realization of the random variable given its parents. Markov blanket In a Bayesian network, the Markov blanket of a node is the set of parents and children of that node, together with the children's parents. The values of the parents and children of a node evidently give information about that node. However, its children's parents also have to be included in the Markov blanket, because they can be used to explain away the node in question. In a Markov random field, the Markov blanket for a node is simply its adjacent (or neighboring) nodes. In a dependency network, the Markov blanket for a node is simply the set of its parents. Dependency network versus Baye ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Model
Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties * Graph (topology), a topological space resembling a graph in the sense of discrete mathematics *Graph of a function * Graph of a relation *Graph paper *Chart, a means of representing data (also called a graph) Computing *Graph (abstract data type), an abstract data type representing relations or connections *graph (Unix), Unix command-line utility *Conceptual graph, a model for knowledge representation and reasoning *Microsoft Graph, a Microsoft API developer platform that connects multiple services and devices Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also * Complex network *Graf *Graff (other) *Graph database *Grapheme, in linguistics *Graphemics *Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") *List of information graphics software *Stati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naive Bayes Classifier
In statistics, naive (sometimes simple or idiot's) Bayes classifiers are a family of " probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. In other words, a naive Bayes model assumes the information about the class provided by each variable is unrelated to the information from the others, with no information shared between the predictors. The highly unrealistic nature of this assumption, called the naive independence assumption, is what gives the classifier its name. These classifiers are some of the simplest Bayesian network models. Naive Bayes classifiers generally perform worse than more advanced models like logistic regressions, especially at quantifying uncertainty (with naive Bayes models often producing wildly overconfident probabilities). However, they are highly scalable, requiring only one parameter for each feature or predictor in a learning problem. Maximum-likelihood training can be done by evaluating a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]