Diophantine Geometry
   HOME





Diophantine Geometry
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry that are of fundamental importance include: * Mordell–Weil theorem * Roth's theorem * Siegel's theorem * Faltings's theorem Background Serge Lang published a book ''Diophantine Geometry'' in the area in 1962, and by this book he coined the term "Diophantine geometry". The traditional arrangement of material on Diophantine equations was by degree and number of variables, as in Mordell's ''Diophantine Equations'' (1969). Mordell's book starts with a remark on homogeneous equations ''f'' = 0 over the rational field, attributed to C. F. Gauss, that non-zero solutions in integers (even primitive lattice p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adolf Hurwitz
Adolf Hurwitz (; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, mathematical analysis, analysis, geometry and number theory. Early life He was born in Hildesheim, then part of the Kingdom of Hanover, to a Jewish family and died in Zürich, in Switzerland. His father Salomon Hurwitz, a merchant, was not wealthy. Hurwitz's mother, Elise Wertheimer, died when he was three years old. Family records indicate that he had siblings and cousins, but their names have yet to be confirmed except for an older brother, Julius, with whom he developed an arithmetical theory for complex continued fractions circa 1890. Hurwitz entered the in Hildesheim in 1868. He was taught mathematics there by Hermann Schubert. Schubert persuaded Hurwitz's father to allow him to attend university, and arranged for Hurwitz to study with Felix Klein at Munich. Salomon Hurwitz could not afford to send his son to university, but his friend, Mr. Edwards, assisted financially. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Zeta-function
In mathematics, the local zeta function (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as :Z(V, s) = \exp\left(\sum_^\infty \frac (q^)^k\right) where is a non-singular -dimensional projective algebraic variety over the field with elements and is the number of points of defined over the finite field extension of . Making the variable transformation gives : \mathit (V,t) = \exp \left( \sum_^ N_k \frac \right) as the formal power series in the variable t. Equivalently, the local zeta function is sometimes defined as follows: : (1)\ \ \mathit (V,0) = 1 \, : (2)\ \ \frac \log \mathit (V,t) = \sum_^ N_k t^\ . In other words, the local zeta function with coefficients in the finite field is defined as a function whose logarithmic derivative generates the number of solutions of the equation defining in the degree extension Formulation Given a finite field ''F'', there is, up to isomorphism, only one field ''Fk'' with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Multiplication
In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer Lattice (group), lattice or Eisenstein integer lattice. It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points. It has also turned out to be a central theme in algebraic number theory, allowing some features of the theory of cyclotomic fields to be carried over to wider areas of application. David Hilbert is said to have remarked that the theory of complex multiplication of elliptic curves was not only the most beautiful part of mathematics but of all science. There is also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Field Theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by Takagi and Artin (with the help of Chebotarev's theorem). One of the major results is: given a number field ''F'', and writing ''K'' for the maximal abelian unramified extension of ''F'', the Galois group of ''K'' over ''F'' is canonically isomorphic to the ideal class group of ''F''. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arithmetic Of Abelian Varieties
In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures. Most of these can be posed for an abelian variety ''A'' over a number field ''K''; or more generally (for global fields or more general finitely-generated rings or fields). Integer points on abelian varieties There is some tension here between concepts: ''integer point'' belongs in a sense to affine geometry, while ''abelian variety'' is inherently defined in projective geometry. The basic results, such as Siegel's theorem on integral points, come from the theory of diophantine approximation. Rational points on abelian varieties The basic result, the Mordell–Weil theorem in Diophantine geometry, says that ''A''(''K''), the group of points on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those Complex torus, complex tori that can be holomorphic, holomorphically embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Irreducibility Theorem
In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory. Formulation of the theorem Hilbert's irreducibility theorem. Let :f_1(X_1, \ldots, X_r, Y_1, \ldots, Y_s), \ldots, f_n(X_1, \ldots, X_r, Y_1, \ldots, Y_s) be irreducible polynomials in the ring :\Q(X_1, \ldots, X_r) _1, \ldots, Y_s Then there exists an ''r''-tuple of rational numbers (''a''1, ..., ''ar'') such that :f_1(a_1, \ldots, a_r, Y_1,\ldots, Y_s), \ldots, f_n(a_1, \ldots, a_r, Y_1,\ldots, Y_s) are irreducible in the ring :\Q _1,\ldots, Y_s Remarks. * It follows from the theorem that there are infinitely many ''r''-tuples. In fact the set of all irreducible special ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thue–Siegel–Roth Theorem
In mathematics, Roth's theorem or Thue–Siegel–Roth theorem is a fundamental result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that algebraic numbers cannot have many rational approximations that are 'very good'. Over half a century, the meaning of ''very good'' here was refined by a number of mathematicians, starting with Joseph Liouville in 1844 and continuing with work of , , , and . Statement Roth's theorem states that every irrational algebraic number \alpha has approximation exponent equal to 2. This means that, for every \varepsilon>0, the inequality :\left, \alpha - \frac\ \frac with C(\alpha,\varepsilon) a positive number depending only on \varepsilon>0 and \alpha. Discussion The first result in this direction is Liouville's theorem on approximation of algebraic numbers, which gives an approximation exponent of ''d'' for an algebraic number α of degree ''d'' ≥ 2. This is already enough to demonstrate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mordell Curve
In algebra, a Mordell curve is an elliptic curve of the form ''y''2 = ''x''3 + ''n'', where ''n'' is a fixed non-zero integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in .... These curves were closely studied by Louis Mordell, from the point of view of determining their integer points. He showed that every Mordell curve contains only finitely many integer points (''x'', ''y''). In other words, the differences of perfect squares and perfect cubes tend to infinity. The question of how fast was dealt with in principle by Baker's method. Hypothetically this issue is dealt with by Marshall Hall's conjecture. Properties *If (''x'', ''y'') is an integer point on a Mordell curve, then so is (''x'', −''y''). *If (''x'', ''y'') is a rational point on a Mordell curve with ''y'' � ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Point
In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point. Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for , the Fermat curve of equation x^n+y^n=1 has no other rational points than , , and, if is even, and . Definition Given a field , and an algebraically closed extension of , an affine variety over is the set of common zeros in of a collection of polynomials with coefficients in : :\begin & f_1(x_1,\ldots,x_n)=0, \\ & \qquad \quad \vdots \\ & f_r(x_1,\dots,x_n)=0. \end These common zeros are called the ''points'' of . A -rational point (or -point) of is a point of that belongs to , that is, a sequence (a_1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]