HOME



picture info

Confluence (abstract Rewriting)
In computer science and mathematics, confluence is a property of rewriting systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an abstract rewriting system. Motivating examples The usual rules of elementary arithmetic form an abstract rewriting system. For example, the expression (11 + 9) × (2 + 4) can be evaluated starting either at the left or at the right parentheses; however, in both cases the same result is eventually obtained. If every arithmetic expression evaluates to the same result regardless of reduction strategy, the arithmetic rewriting system is said to be ground-confluent. Arithmetic rewriting systems may be confluent or only ground-confluent depending on details of the rewriting system. A second, more abstract example is obtained from the following proof of each group element equalling the inverse of its inverse: Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Koblenz Im Buga-Jahr 2011 - Deutsches Eck 01
Koblenz ( , , ; Moselle Franconian language, Moselle Franconian: ''Kowelenz'') is a German city on the banks of the Rhine (Middle Rhine) and the Moselle, a multinational tributary. Koblenz was established as a Roman Empire, Roman military post by Nero Claudius Drusus, Drusus . Its name originates from the Latin ', meaning "(at the) confluence". The actual confluence is today known as the "Deutsches Eck, German Corner", a symbol of the unification of Germany that features an Emperor William monuments, equestrian statue of Emperor William I. The city celebrated its 2,000th anniversary in 1992. The city ranks as the third-largest city by population in Rhineland-Palatinate, behind Mainz and Ludwigshafen am Rhein. Its usual-residents' population is 112,000 (). Koblenz lies in a narrow flood plain between high hill ranges, some reaching mountainous height, and is served by an express rail and autobahn network. It is part of the populous Rhineland. Name Historic spellings include ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Idempotence
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + '' potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid (\mathbb, \times) of the natural numbers with multiplication, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Pair (logic)
A critical pair arises in a term rewriting system when two rewrite rules overlap to yield two different terms. In more detail, (''t''1, ''t''2) is a critical pair if there is a term ''t'' for which two different applications of a rewrite rule (either the same rule applied differently, or two different rules) yield the terms ''t''1 and ''t''2. Definitions The actual definition of a critical pair is slightly more involved as it excludes pairs that can be obtained from critical pairs by substitution and orients the pair based on the overlap. Specifically, for a pair of overlapping rules \rho_0 : l_0 \to r_0 and \rho_1 : l_1 \to r_1, with the overlap being that l_0 = D[s] for some non-empty context (term rewriting), context D [\;], and the term s (that is not a variable) matches l_1 under some substitutions s \sigma = l_1 \tau that are most general, the critical pair is (D \sigma[r_1 \tau], r_0 \sigma). When both sides of the critical pair can reduce to the same term, the critical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence (logic)
In mathematics, computer science and logic, convergence is the idea that different sequences of transformations come to a conclusion in a finite amount of time (the transformations are terminating), and that the conclusion reached is independent of the path taken to get to it (they are confluent). More formally, a preordered set of term rewriting transformations are said to be convergent if they are confluent and terminating. See also * Logical equality *Logical equivalence In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending ... * Rule of replacement References Rewriting systems {{plt-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matsumoto's Theorem (group Theory)
In group theory, Matsumoto's theorem, proved by , gives conditions for two reduced words of a Coxeter group to represent the same element. Sometimes, this is also called ''Matsumoto's lemma.'' Statement A Coxeter group is a group that admits a presentation G= \langle X \mid R\sqcup S\rangle, where X is a set of generators, R is a set of relations of the form xyxy\ldots = yxyx\ldots for x,y\in X, where the two sides of the relation are words of same length; and S is the set of relations x^2= 1 for all x\in X. The relations in R are sometimes called ''Artin relations'', because the defining relations of an Artin group have this form. If two reduced words represent the same element of a Coxeter group, then Matsumoto's theorem states that the first word can be transformed into the second by repeatedly transforming :''xyxy...'' to ''yxyx...'' (or vice versa). In other words: if two reduced words are equivalent in the group, then they are equivalent under the sole Artin relations. Ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gröbner Basis
In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K _1,\ldots,x_n/math> over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps. Gröbner basis computation can be seen as a multivariate, non-linear generalization of both Euclid's algorithm for computing polynomial greatest common divisors, and Gaussian elimination for linear systems. Gröbner bases were introduced by Bruno Buchberger in his 1965 Ph.D. thesis, which also included an algorithm to compute them ( Buchberger's alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


β-reduction
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940. Lambda calculus consists of constructing lambda terms and performing reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A variable is a character or string representing a parameter. # (\lambda x.M): A lambda abstraction is a function definition, taking as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Form (abstract Rewriting)
In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms. Definitions Stated formally, if (''A'',→) is an abstract rewriting system, ''x''∈''A'' is in normal form if no ''y''∈''A'' exists such that ''x''→''y'', i.e. ''x'' is an irreducible term. An object ''a'' is weakly normalizing if there exists at least one particular sequence of rewrites starting from ''a'' that eventually yields a normal form. A rewriting system has the weak normalization property or is ''(weakly) normalizing'' (WN) if every object is weakly normalizing. An object ''a'' is strongly normalizing if every sequence of rewrites starting from ''a'' eventually terminates with a normal form. A rewriting system is ''strongly normalizing'', ''terminating'', ''noetherian'', or has the (strong) norma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church–Rosser Theorem
In lambda calculus, the Church–Rosser theorem states that, when applying reduction rules to terms, the ordering in which the reductions are chosen does not make a difference to the eventual result. More precisely, if there are two distinct reductions or sequences of reductions that can be applied to the same term, then there exists a term that is reachable from both results, by applying (possibly empty) sequences of additional reductions. The theorem was proved in 1936 by Alonzo Church and J. Barkley Rosser, after whom it is named. The theorem is symbolized by the adjacent diagram: If term ''a'' can be reduced to both ''b'' and ''c'', then there must be a further term ''d'' (possibly equal to either ''b'' or ''c'') to which both ''b'' and ''c'' can be reduced. Viewing the lambda calculus as an abstract rewriting system, the Church–Rosser theorem states that the reduction rules of the lambda calculus are confluent. As a consequence of the theorem, a term in the lambda cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]