Complex Measure
In mathematics, specifically measure theory, a complex measure generalizes the concept of measure by letting it have complex values. In other words, one allows for sets whose size (length, area, volume) is a complex number. Definition Formally, a ''complex measure'' \mu on a measurable space (X,\Sigma) is a complex-valued function :\mu: \Sigma \to \mathbb that is sigma-additive. In other words, for any sequence (A_)_ of disjoint sets belonging to \Sigma , one has :\sum_^ \mu(A_) = \mu \left( \bigcup_^ A_ \right) \in \mathbb. As \displaystyle \bigcup_^ A_ = \bigcup_^ A_ for any permutation (bijection) \sigma: \mathbb \to \mathbb , it follows that \displaystyle \sum_^ \mu(A_) converges unconditionally (hence, since \mathbb is finite dimensional, \mu converges absolutely). Integration with respect to a complex measure One can define the ''integral'' of a complex-valued measurable function with respect to a complex measure in the same way as the Lebesgue integral ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polar Decomposition
In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is a unitary matrix, and P is a positive semi-definite Hermitian matrix (U is an orthogonal matrix, and P is a positive semi-definite symmetric matrix in the real case), both square and of the same size. If a real n \times n matrix A is interpreted as a linear transformation of n-dimensional space \mathbb^n, the polar decomposition separates it into a rotation or reflection U of \mathbb^n and a scaling of the space along a set of n orthogonal axes. The polar decomposition of a square matrix A always exists. If A is invertible, the decomposition is unique, and the factor P will be positive-definite. In that case, A can be written uniquely in the form A = U e^X, where U is unitary, and X is the unique self-adjoint logarithm of the matrix P. This decomposition is useful in computing the fundamental group of (matrix) Lie groups. The polar decompos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radon–Nikodym Theorem
In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A ''measure'' is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space. One way to derive a new measure from one already given is to assign a density to each point of the space, then Lebesgue integration, integrate over the measurable subset of interest. This can be expressed as :\nu(A) = \int_A f \, d\mu, where is the new measure being defined for any measurable subset and the function is the density at a given point. The integral is with respect to an existing measure , which may often be the canonical Lebesgue measure on the real line or the ''n''-dimensional Euclidean space (corr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolutely Integrable
Absolutely may refer to: * ''Absolutely'' (Boxer album), the second rock music album recorded by the band Boxer * ''Absolutely'' (Madness album), the 1980 second album from the British ska band Madness * ''Absolutely'' (ABC album), a comprehensive greatest hits package released in 1990 by the band ABC * ''Absolutely'' (Eurogliders album), the third studio album by Australian Indie pop, rock band Eurogliders ** "Absolutely" (Eurogliders song), a song from the aforementioned album. * ''Absolutely'' (Rik Emmett album), the debut solo album by the Canadian rock guitarist Rik Emmett * ''Absolutely'' (Sister Hazel album), Sister Hazel's sixth studio album * " Absolutely (Story of a Girl)", a 2000 song by Nine Days * "Absolutely", a 2004 song by 213 on their debut album '' The Hard Way'' * ''Absolutely'' (TV series), a British comedy sketch show * Abso Lutely Productions, a production company started by Tim Heidecker and Eric Wareheim See also * Absolute (other) * Absolu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measurable Set
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Rad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of Set (mathematics), sets is the set of all element (set theory), elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of Zero, zero () sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the List of mathematical symbols, table of mathematical symbols. Binary union The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, : A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supremum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, Ju ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indeterminate Form
Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function. For example, \begin \lim_ \bigl(f(x) + g(x)\bigr) &= \lim_ f(x) + \lim_ g(x), \\ mu\lim_ \bigl(f(x)g(x)\bigr) &= \lim_ f(x) \cdot \lim_ g(x), \end and likewise for other arithmetic operations; this is sometimes called the algebraic limit theorem. However, certain combinations of particular limiting values cannot be computed in this way, and knowing the limit of each function separately does not suffice to determine the limit of the combination. In these particular situations, the limit is said to take an indeterminate form, described by one of the informal expressions \frac 00,~ \frac,~ 0\times\infty,~ \infty - \infty,~ 0^0,~ 1^\infty, \text \infty^0, among a wide ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hahn Decomposition Theorem
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any measurable space (X,\Sigma) and any signed measure \mu defined on the \sigma -algebra \Sigma , there exist two \Sigma -measurable sets, P and N , of X such that: # P \cup N = X and P \cap N = \varnothing . # For every E \in \Sigma such that E \subseteq P , one has \mu(E) \geq 0 , i.e., P is a positive set for \mu . # For every E \in \Sigma such that E \subseteq N , one has \mu(E) \leq 0 , i.e., N is a negative set for \mu . Moreover, this decomposition is essentially unique, meaning that for any other pair (P',N') of \Sigma -measurable subsets of X fulfilling the three conditions above, the symmetric differences P \triangle P' and N \triangle N' are \mu -null sets in the strong sense that every \Sigma -measurable subset of them has zero measure. The pair (P,N) is then called a ''Hahn decomposition'' of the signed measure ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Signed Measure
In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign. Definition There are two slightly different concepts of a signed measure, depending on whether or not one allows it to take infinite values. Signed measures are usually only allowed to take finite real values, while some textbooks allow them to take infinite values. To avoid confusion, this article will call these two cases "finite signed measures" and "extended signed measures". Given a measurable space (X, \Sigma) (that is, a set X with a σ-algebra \Sigma on it), an extended signed measure is a set function \mu : \Sigma \to \R \cup \ such that \mu(\varnothing) = 0 and \mu is σ-additive – that is, it satisfies the equality \mu\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu(A_n) for any sequence A_1, A_2, \ldots, A_n, \ldots of disjoint sets in \Sigma. The series on the right must converge absolute ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |