HOME



picture info

Classification Of Finite Simple Groups
In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating groups, alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic groups, sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups). The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Daniel Gorenstein
Daniel E. Gorenstein (January 1, 1923 – August 26, 1992) was an American mathematician best remembered for his contribution to the classification of finite simple groups. Gorenstein mastered calculus at age 12 and subsequently matriculated at Harvard University, where he earned his bachelor's and master's degrees. During the Second World War, he taught mathematics to military personnel. After the war, he stayed at Harvard and earned his PhD 1950 under the supervision of Oscar Zariski. In his dissertation, Gorenstein introduced a duality principle for plane curves that motivated Alexander Grothendieck's introduction of Gorenstein rings. Gorenstein held posts at Clark University and Northeastern University, before moving to Rutgers University in 1969, where he remained for the rest of his life. He became the founding director of the Center for Discrete Mathematics and Theoretical Computer Science ( DIMACS) at Rutgers in 1989, and remained at this post until his death. He was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gorenstein–Walter Theorem
In mathematics, the Gorenstein–Walter theorem, proved by , states that if a finite group ''G'' has a dihedral Sylow 2-subgroup, and ''O''(''G'') is the maximal normal subgroup of odd order, then ''G''/''O''(''G'') is isomorphic to a 2-group, or the alternating group In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted ... ''A''7, or a subgroup of PΓL2(''q'') containing PSL2(''q'') for ''q'' an odd prime power. Note that A5 ≈ PSL2(4) ≈ PSL2(5) and A6 ≈ PSL2(9). References * * * Theorems about finite groups {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer–Suzuki Theorem
In mathematics, the Brauer–Suzuki theorem, proved by , , , states that if a finite group has a generalized quaternion Sylow 2-subgroup and no non-trivial normal subgroups of odd order, then the group has a center of order 2. In particular, such a group cannot be simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by John .... A generalization of the Brauer–Suzuki theorem is given by Glauberman's Z* theorem. References * * * gives a detailed proof of the Brauer–Suzuki theorem. * Theorems about finite groups {{Abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Feit–Thompson Theorem
In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved in the early 1960s by Walter Feit and John Griggs Thompson. History In the early 20th century, William Burnside conjectured that every nonabelian finite simple group has even order. Richard Brauer suggested using the centralizers of involutions of simple groups as the basis for the classification of finite simple groups, as the Brauer–Fowler theorem shows that there are only a finite number of finite simple groups with given centralizer of an involution. A group of odd order has no involutions, so to carry out Brauer's program it is first necessary to show that non-cyclic finite simple groups never have odd order. This is equivalent to showing that odd order groups are solvable, which is what Feit and Thompson proved. The attack on Burnside's conjecture was started by Michio Suzuki, who studied CA groups; these are groups su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equations. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example The smallest Galois field extension of \mathbb containing the elementa = \sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank Of A Group
In the mathematical subject of group theory, the rank of a group ''G'', denoted rank(''G''), can refer to the smallest cardinality of a generating set for ''G'', that is : \operatorname(G)=\min\. If ''G'' is a finitely generated group, then the rank of ''G'' is a non-negative integer. The notion of rank of a group is a group-theoretic analog of the notion of dimension of a vector space. Indeed, for ''p''-groups, the rank of the group ''P'' is the dimension of the vector space ''P''/Φ(''P''), where Φ(''P'') is the Frattini subgroup. The rank of a group is also often defined in such a way as to ensure subgroups have rank less than or equal to the whole group, which is automatically the case for dimensions of vector spaces, but not for groups such as affine groups. To distinguish these different definitions, one sometimes calls this rank the subgroup rank. Explicitly, the subgroup rank of a group ''G'' is the maximum of the ranks of its subgroups: : \operatorname(G)=\max_ \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasithin Group
In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. The classification of quasithin groups is a crucial part of the classification of finite simple groups. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of ''G''. When ''G'' is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group). Classification The quasithin groups were classified in a 1221-page paper by . An earlier announcement by of the classification, on the basis of which the classification of finite simple groups was announced as finished in 1983, was pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classification Of The Finite Simple Groups
In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups). The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Finite Simple Groups
In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type, or one of 26 sporadic groups. The list below gives all finite simple groups, together with their order, the size of the Schur multiplier, the size of the outer automorphism group, usually some small representations, and lists of all duplicates. Summary The following table is a complete list of the 18 families of finite simple groups and the 26 sporadic simple groups, along with their orders. Any non-simple members of each family are listed, as well as any members duplicated within a family or between families. (In removing duplicates it is useful to note that no two finite simple groups have the same order, except that the group A8 = ''A''3(2) and ''A''2(4) both have order 20160, and that the group ''Bn''(''q'') has the same order as ''Cn''(''q'') for ''q'' odd, ''n'' > 2. The small ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]