HOME





Chow's Lemma
Chow's lemma, named after Wei-Liang Chow, is one of the foundational results in algebraic geometry. It roughly says that a proper morphism is fairly close to being a projective morphism. More precisely, a version of it states the following: :If X is a scheme that is proper over a noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ... base S, then there exists a projective S-scheme X' and a surjective S-morphism f: X' \to X that induces an isomorphism f^(U) \simeq U for some dense open U\subseteq X. Proof The proof here is a standard one. Reduction to the case of X irreducible We can first reduce to the case where X is irreducible. To start, X is noetherian since it is of finite type over a noetherian base. Therefore it has finitely many irreducible components X_i, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow's Theorem (other)
In mathematics, Chow's theorem may refer to a number of theorems due to Wei-Liang Chow: * Chow's theorem: Any analytic subvariety in projective space is actually algebraic. * Chow–Rashevskii theorem: In sub-Riemannian geometry, any two points are connected by a horizontal curve. See also * Chow's lemma Chow's lemma, named after Wei-Liang Chow, is one of the foundational results in algebraic geometry. It roughly says that a proper morphism is fairly close to being a projective morphism. More precisely, a version of it states the following: :If X ... * Chow's moving lemma {{mathematical disambiguation Zhou, Weiliang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wei-Liang Chow
Chow Wei-Liang (; October 1, 1911, Shanghai – August 10, 1995, Baltimore) was a Chinese-American mathematician and stamp collector. He was well known for his work in algebraic geometry. Biography Chow was a student in the US, graduating from the University of Chicago in 1931. In 1932 he attended the University of Göttingen, then transferred to the Leipzig University where he worked with Bartel Leendert van der Waerden, van der Waerden. They produced a series of joint papers on intersection theory, introducing in particular the use of what are now generally called Chow coordinates (which were in some form familiar to Arthur Cayley). He married Margot Victor in 1936, and took a position at the National Central University in Nanjing. His mathematical work was seriously affected by the wartime situation in China. He taught at the Tongji University, National Tung-Chi University in Shanghai in the academic year 1946–47, and then went to the Institute for Advanced Study in Prince ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Morphism
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism f:X\to Y of schemes is called universally closed if for every scheme Z with a morphism Z\to Y, the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Projective Morphism
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Scheme
In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets \operatorname A_i, where each A_i is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether. It can be shown that, in a locally Noetherian scheme, if  \operatorname A is an open affine subset, then ''A'' is a Noetherian ring; in particular, \operatorname A is a Noetherian scheme if and only if ''A'' is a Noetherian ring. For a locally Noetherian scheme ''X,'' the local rings \mathcal_ are also Noetherian rings. A Noetherian scheme is a Noetherian topological space. But the converse is false in general; consider, for example, the spectrum of a non-Noetherian valuation ring. The definitions extend to formal schemes. Properties and Noetherian hypotheses Having ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Variety
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in \mathbb^n of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dimension can be read off the Hilbert polynomial of this graded ring. Projective varieties arise in many ways. They are complete, which roughly can be expressed by saying t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birational Geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying Map (mathematics), mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational mapping, rational map from one variety (understood to be Irreducible component, irreducible) X to another variety Y, written as a dashed arrow , is defined as a algebraic geometry#Morphism of affine varieties, morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a ration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Algebraic Geometry
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reason ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]