HOME





Character (group Theory)
In mathematics, a character is (most commonly) a special kind of function (mathematics), function from a group (mathematics), group to a field (mathematics), field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified. Multiplicative character A multiplicative character (or linear character, or simply character) on a group ''G'' is a group homomorphism from ''G'' to the unit group, multiplicative group of a field , usually the field of complex numbers. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an abelian group under pointwise multiplication. This group is referred to as the character group of ''G''. Sometimes only ''unitary'' characters are considered (thus the image is in the unit circle); other such homomorphisms are then called ''quasi-characters''. Dirichlet characters can be seen as a special case of this definition. Multiplicative characters are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (matrix)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \mathb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pontryagin Duality
In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and the additive group of the integers (also with the discrete topology), the real numbers, and every finite-dimensional vector space over the reals or a -adic field. The Pontryagin dual of a locally compact abelian group is the locally compact abelian topological group, consisting of the continuous group homomorphisms from the group to the circle group, with the operation of pointwise multiplication and the topology of uniform convergence on compact sets. The Pontryagin duality theorem establishes Pontryagin duality by stating that any locally compact abelian group is naturally isomorphic with its bidual (the dual of its dual). The Fourier inversion theorem is a special case of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characterization (mathematics)
In mathematics, a characterization of an object is a set of conditions that, while possibly different from the definition of the object, is logically equivalent to it. To say that "Property ''P'' characterizes object ''X''" is to say that not only does ''X'' have property ''P'', but that ''X'' is the ''only'' thing that has property ''P'' (i.e., ''P'' is a defining property of ''X''). Similarly, a set of properties ''P'' is said to characterize ''X'', when these properties distinguish ''X'' from all other objects. Even though a characterization identifies an object in a unique way, several characterizations can exist for a single object. Common mathematical expressions for a characterization of ''X'' in terms of ''P'' include "''P'' is necessary and sufficient for ''X''", and "''X'' holds if and only if ''P''". It is also common to find statements such as "Property ''Q'' characterizes ''Y'' up to isomorphism". The first type of statement says in different words that the extension o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Character
In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of ''X'' is fixed, the parity (oddness or evenness) of a permutation \sigma of ''X'' can be defined as the parity of the number of inversions for ''σ'', i.e., of pairs of elements ''x'', ''y'' of ''X'' such that and . The sign, signature, or signum of a permutation ''σ'' is denoted sgn(''σ'') and defined as +1 if ''σ'' is even and −1 if ''σ'' is odd. The signature defines the alternating character of the symmetric group S''n''. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (''ε''''σ''), which is defined for all maps from ''X'' to ''X'', and has value zero for non-bijective maps. The sign of a permutation can be explicitly expressed as : where ''N''('' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinitesimal Character
In mathematics, the infinitesimal character of an irreducible representation \rho of a semisimple Lie group ''G'' on a vector space ''V'' is, roughly speaking, a mapping to scalars that encodes the process of first differentiating and then diagonalizing the representation. It therefore is a way of extracting something essential from the representation \rho by two successive linearizations. Formulation The infinitesimal character is the linear form on the center ''Z'' of the universal enveloping algebra of the Lie algebra of ''G'' that the representation induces. This construction relies on some extended version of Schur's lemma to show that any ''z'' in ''Z'' acts on ''V'' as a scalar, which by abuse of notation could be written \rho (z). In more classical language, ''z'' is a differential operator, constructed from the infinitesimal transformations which are induced on ''V'' by the Lie algebra of ''G''. The effect of Schur's lemma is to force all ''v'' in ''V'' to be simultane ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hecke Character
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of ''L''-functions larger than Dirichlet ''L''-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function. Definition A Hecke character is a character of the idele class group of a number field or global function field. It corresponds uniquely to a character of the idele group which is trivial on principal ideles, via composition with the projection map. This definition depends on the definition of a character, which varies slightly between authors: It may be defined as a homomorphism to the non-zero complex numbers (also called a "quasicharacter"), or as a homomorphism to the unit circle in \mathbb ("unitary"). Any quasicharacter (of the idele class group) can be written uniquely as a unitary character times a real power of the norm, so there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harish-Chandra Character
In mathematics, the Harish-Chandra character, named after Harish-Chandra, of a representation of a semisimple Lie group ''G'' on a Hilbert space ''H'' is a distribution on the group ''G'' that is analogous to the character of a finite-dimensional representation of a compact group. Definition Suppose that π is an irreducible unitary representation of ''G'' on a Hilbert space ''H''. If ''f'' is a compactly supported smooth function on the group ''G'', then the operator on ''H'' :\pi(f) = \int_Gf(x)\pi(x)\,dx is of trace class, and the distribution :\Theta_\pi:f\mapsto \operatorname(\pi(f)) is called the character (or global character or Harish-Chandra character) of the representation. The character Θπ is a distribution on ''G'' that is invariant under conjugation, and is an eigendistribution of the center of the universal enveloping algebra of ''G'', in other words an invariant eigendistribution, with eigenvalue the infinitesimal character of the representation π ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character Group
In mathematics, a character group is the group of representations of an abelian group by complex-valued functions. These functions can be thought of as one-dimensional matrix representations and so are special cases of the group characters that arise in the related context of character theory. Whenever a group is represented by matrices, the function defined by the trace of the matrices is called a character; however, these traces ''do not'' in general form a group. Some important properties of these one-dimensional characters apply to characters in general: * Characters are invariant on conjugacy classes. * The characters of irreducible representations are orthogonal. The primary importance of the character group for finite abelian groups is in number theory, where it is used to construct Dirichlet characters. The character group of the cyclic group also appears in the theory of the discrete Fourier transform. For locally compact abelian groups, the character group (with an ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Circle Group
In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle group forms a subgroup of , the multiplicative group of all nonzero complex numbers. Since \C^\times is abelian, it follows that \mathbb T is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure : \theta \mapsto z = e^ = \cos\theta + i\sin\theta. This is the exponential map for the circle group. The circle group plays a central role in Pontryagin duality and in the theory of Lie groups. The notation \mathbb T for the circle group stems from the fact that, with the standard topology (see below), the circle group is a 1-torus. More generally, \mathbb T^n (the direct product of \mathbb T with itself n times) is geometrically an n-toru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals. Generalizing these transforms to other domains is generally called Fourier analysis, although the term is sometimes used interchangeably with harmonic analysis. Harmonic analysis has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis, spectral analysis, and neuroscience. The term "harmonics" originated from the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are integer multiples of one another, as are the freq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, the sum is defined (a, b) + (c, d) to be (a + c, b + d); in other words, addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. Direct sums can also be formed with any finite number of summands; for example, A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). That relies on the fact that the direct sum is associative up to isomorphism. That is, (A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]