Cauchy–Euler Operator
   HOME





Cauchy–Euler Operator
In mathematics, a Cauchy–Euler operator is a differential operator of the form p(x)\cdot for a polynomial ''p''. It is named after Augustin-Louis Cauchy and Leonhard Euler. The simplest example is that in which ''p''(''x'') = ''x'', which has eigenvalues ''n'' = 0, 1, 2, 3, ... and corresponding eigenfunctions ''x''''n''. See also * Cauchy–Euler equation * Sturm–Liouville theory In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form \frac \left (x) \frac\right+ q(x)y = -\lambda w(x) y for given functions p(x), q(x) and w(x), together with some ... References Differential operators {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition Given a nonnegative integer ''m'', an order-m linear differential operator is a map P from a function space \mathcal_1 on \mathbb^n to another function space \mathcal_2 that can be written as: P = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real analysis), pioneered the field complex analysis, and the study of permutation groups in abstract algebra. Cauchy also contributed to a number of topics in mathematical physics, notably continuum mechanics. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: : "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific worker; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. Biography Youth and education Cauchy was the son of Lou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leonhard Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential discoveries in many other branches of mathematics, such as analytic number theory, complex analysis, and infinitesimal calculus. He also introduced much of modern mathematical terminology and Mathematical notation, notation, including the notion of a mathematical function. He is known for his work in mechanics, fluid dynamics, optics, astronomy, and music theory. Euler has been called a "universal genius" who "was fully equipped with almost unlimited powers of imagination, intellectual gifts and extraordinary memory". He spent most of his adult life in Saint Petersburg, Russia, and in Berlin, then the capital of Kingdom of Prussia, Prussia. Euler is credited for popularizing the Greek letter \pi (lowercase Pi (letter), pi) to denote Pi, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy–Euler Equation
In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear differential equation, linear homogeneous differential equation, homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an ''equidimensionality, equidimensional'' equation. Because of its particularly simple equidimensional structure, the differential equation can be solved explicitly. The equation Let be the ''n''th derivative of the unknown function . Then a Cauchy–Euler equation of order ''n'' has the form a_ x^n y^(x) + a_ x^ y^(x) + \dots + a_0 y(x) = 0. The substitution x = e^u (that is, u = \ln(x); for x < 0, in which one might replace all instances of x by , x, , extending the solution's domain to \reals \setminus \) can be used to reduce this equation to a linear differential equation with constant coefficients. Alternatively, the trial solution y = x^m
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm–Liouville Theory
In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form \frac \left (x) \frac\right+ q(x)y = -\lambda w(x) y for given functions p(x), q(x) and w(x), together with some boundary conditions at extreme values of x. The goals of a given Sturm–Liouville problem are: * To find the for which there exists a non-trivial solution to the problem. Such values are called the ''eigenvalues'' of the problem. * For each eigenvalue , to find the corresponding solution y = y(x) of the problem. Such functions y are called the '' eigenfunctions'' associated to each . Sturm–Liouville theory is the general study of Sturm–Liouville problems. In particular, for a "regular" Sturm–Liouville problem, it can be shown that there are an infinite number of eigenvalues each with a unique eigenfunction, and that these eigenfunctions form an orthonormal basis of a certain Hilbert space of functions. This theory is important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]