HOME



picture info

Casey's Theorem
In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey. Formulation of the theorem Note that in the degenerate case, where all four circles reduce to points, this is exactly Ptolemy's theorem. :\,t_ \cdot t_+t_ \cdot t_=t_\cdot t_. Proof The following proof is attributable to Zacharias. Denote the radius of circle \,O_i by \,R_i and its tangency point with the circle \,O by \,K_i. We will use the notation \,O, O_i for the centers of the circles. Note that from Pythagorean theorem, :\,t_^2=\overline^2-(R_i-R_j)^2. :\overline^2=\overline^2+\overline^2-2\overline\cdot \overline\cdot \cos\angle O_iOO_j Since the circles \,O,O_i tangent to each other: :\overline = R - R_i,\, \angle O_iOO_j = \angle K_iOK_j Let \,C be a point on the circle \,O. According to the law of sines in triangle \,K_iCK_j: :\overline = 2R\cdot \sin\angle K_iCK_j = 2R\cdot \sin\frac Therefore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ptolemy's Theorem
In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy. If the vertices of the cyclic quadrilateral are ''A'', ''B'', ''C'', and ''D'' in order, then the theorem states that: : AC\cdot BD = AB\cdot CD+BC\cdot AD This relation may be verbally expressed as follows: :''If a quadrilateral is cyclic then the product of the lengths of its diagonals is equal to the sum of the products of the lengths of the pairs of opposite sides.'' Moreover, the converse of Ptolemy's theorem is also true: :''In a quadrilateral, if the sum of the products of the lengths of its two pairs of opposite sides is equal to the product of the lengths of its diagonals, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. One of those is the parallel postulate which relates to parallel lines on a Euclidean plane. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematical model, models, and mathematics#Calculus and analysis, change. History One of the earliest known mathematicians was Thales of Miletus (); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem. The number of known mathematicians grew when Pythagoras of Samos () established the Pythagorean school, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Casey (mathematician)
John Casey (12 May 1820, Kilbehenny, County Limerick, Ireland – 3 January 1891, Dublin) was a respected Irish geometer. He is most famous for Casey's theorem on a circle that is tangent to four other circles, an extension of Ptolemy's theorem. However, he contributed several novel proofs and perspectives on Euclidean geometry. He and Émile Lemoine are considered to be the co-founders of the modern geometry of the circle and the triangle. Biography He was born at Kilbehenny in Limerick, Ireland and educated locally at Mitchelstown, before becoming a teacher under the Board of National Education. He later became headmaster of the Central Model Schools in Kilkenny City. He subsequently entered Trinity College Dublin in 1858, where he was elected a Scholar in 1861 and was awarded the degree of BA in 1862. He was then Mathematics Master at Kingston School (1862–1873), Professor of Higher Mathematics and Mathematical Physics at the newly founded Catholic University of Ire ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Casey New1a
Casey may refer to: Places Antarctica *Casey Station * Casey Range Australia * Casey, Australian Capital Territory * City of Casey, Melbourne * Division of Casey, electoral district for the House of Representatives Canada * Casey, Ontario * Casey, Quebec, a village - see Casey Emergency Airstrip United States * Casey, Illinois, a city * Casey, Iowa, a city * Casey County, Kentucky * Casey, Wisconsin, a town People and fictional characters * Casey (given name) * Casey (surname) Other uses * Casey (band), hardcore punk from South Wales * "Casey" (song), a 2008 song by Darren Hayes * Casey (typeface), a sans-serif typeface developed by the Kowloon-Canton Railway Corporation for use in its railway system * Casey, the Japanese name for Abra, one of the fictional species of Pokémon * ''Planned Parenthood v. Casey'', 1992 U.S. Supreme Court decision that upheld limited abortion rights * Casey's, a general store chain See also * * * Cayce (other) * Keysi * O' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagorean Theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides , and the hypotenuse , sometimes called the Pythagorean equation: :a^2 + b^2 = c^2 . The theorem is named for the Ancient Greece, Greek philosopher Pythagoras, born around 570 BC. The theorem has been Mathematical proof, proved numerous times by many different methods – possibly the most for any mathematical theorem. The proofs are diverse, including both Geometry, geometric proofs and Algebra, algebraic proofs, with some dating back thousands of years. When Euclidean space is represented by a Cartesian coordinate system in analytic geometry, Euclidean distance satisfies th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Sines
In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\, 2R, where , and are the lengths of the sides of a triangle, and , and are the opposite angles (see figure 2), while is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the Multiplicative inverse, reciprocals; \frac \,=\, \frac \,=\, \frac. The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data (called the ''ambiguous case'') and the technique gives two possible values for the enclosed angle. The law of sines is on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrilateral
In Euclidean geometry, geometry a quadrilateral is a four-sided polygon, having four Edge (geometry), edges (sides) and four Vertex (geometry), corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple polygon, simple (not self-intersecting), or complex polygon, complex (self-intersecting, or crossed). Simple quadrilaterals are either convex polygon, convex or concave polygon, concave. The Internal and external angle, interior angles of a simple (and Plane (geometry), planar) quadrilateral ''ABCD'' add up to 360 Degree (angle), degrees, that is :\angle A+\angle B+\angle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feuerbach's Theorem
In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach..Encyclopedia of Triangle Centers
, accessed 2014-10-24.
Feuerbach's theorem, published by Feuerbach in 1822, states more generally that the nine-point circle is tangent to the three s of the triangle as well as its incircle. A very short proof of this theorem based on
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jahresbericht Der Deutschen Mathematiker-Vereinigung
The German Mathematical Society (, DMV) is the main professional society of German mathematicians and represents German mathematics within the European Mathematical Society (EMS) and the International Mathematical Union (IMU). It was founded in 1890 in Bremen with the set theorist Georg Cantor as first president. Founding members included Georg Cantor, Felix Klein, Walther von Dyck, David Hilbert, Hermann Minkowski, Carl Runge, Rudolf Sturm, Hermann Schubert, and Heinrich Weber. The current president of the DMV is . Activities In honour of its founding president, Georg Cantor, the society awards the Cantor Medal. The DMV publishes two scientific journals, the ''Jahresbericht der DMV'' and ''Documenta Mathematica''. It also publishes a quarterly magazine for its membership the ''Mitteilungen der DMV''. The annual meeting of the DMV is called the ''Jahrestagung''; the DMV traditionally meets every four years together with the Austrian Mathematical Society (ÖMG) and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems About Circles
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reason ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]