HOME





Calculus Of Constructions
In mathematical logic and computer science, the calculus of constructions (CoC) is a type theory created by Thierry Coquand. It can serve as both a typed programming language and as constructive foundation for mathematics. For this second reason, the CoC and its variants have been the basis for Coq and other proof assistants. Some of its variants include the calculus of inductive constructions (which adds inductive types), the calculus of (co)inductive constructions (which adds coinduction), and the predicative calculus of inductive constructions (which removes some impredicativity). General traits The CoC is a higher-order typed lambda calculus, initially developed by Thierry Coquand. It is well known for being at the top of Barendregt's lambda cube. It is possible within CoC to define functions from terms to terms, as well as terms to types, types to types, and types to terms. The CoC is strongly normalizing, and hence consistent. Usage The CoC has been developed a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lean (proof Assistant)
Lean is a proof assistant and a Functional programming, functional programming language. It is based on the calculus of constructions with inductive types. It is an open-source project hosted on GitHub. Development is currently supported by the Nonprofit organization, non-profit Lean Focused Research Organization, Focused Research Organization (FRO). History Lean was developed primarily by Leonardo de Moura while employed by Microsoft Research and now Amazon Web Services, and has had significant contributions from other coauthors and collaborators during its history. It was launched by Leonardo de Moura at Microsoft Research in 2013. The initial versions of the language, later known as Lean 1 and 2, were experimental and contained features such as support for homotopy type theory – based foundations that were later dropped. Lean 3 (first released Jan 20, 2017) was the first moderately stable version of Lean. It was implemented primarily in C++ with some features written in L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dependent Type
In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Rocq (previously known as ''Coq''), F*, Epigram, Idris (programming language), Idris, and Lean (proof assistant), Lean, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations. Two common examples of dependent types are ''dependent functions'' and ''dependent pairs''. The return type of a dependent function may depend on the ''value'' (not just type) of one of its arguments. For instance, a function that takes a positive integer n may return an array of length n, where the array length is part of the type of the array. (Note that this is different from polymorphism and generi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




System F
System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds. Whereas simply typed lambda calculus has variables ranging over terms, and binders for them, System F additionally has variables ranging over ''types'', and binders for them. As an example, the fact that the identity function can have any type of the form ''A'' → ''A'' would be formalized in System F as the judgement :\vdash \Lambda\alpha. \lambda x^\alpha.x: \forall\alpha.\alpha \to \alpha where \alpha is a type variable. The upper-case \Lambda is traditionally used to denote type-level functions, as opposed to the lower-ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lambda Cube
In mathematical logic and type theory, the λ-cube (also written lambda cube) is a framework introduced by Henk Barendregt to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus. Each dimension of the cube corresponds to a new kind of dependency between terms and types. Here, "dependency" refers to the capacity of a term or type to Free variables and bound variables, bind a term or type. The respective dimensions of the λ-cube correspond to: * x-axis (\rightarrow): types that can depend on terms, corresponding to dependent types. * y-axis (\uparrow): terms that can depend on types, corresponding to Parametric polymorphism, polymorphism. * z-axis (\nearrow): types that can depend on other types, corresponding to (binding) type operators. The different ways to combine these three dimensions yield the 8 vertices of the cube, each corresponding to a different kind of typed system. The λ-cube can be generali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pure Type System
In the branches of mathematical logic known as proof theory and type theory, a pure type system (PTS), previously known as a generalized type system (GTS), is a form of typed lambda calculus that allows an arbitrary number of Structure (mathematical logic)#Many-sorted structures, sorts and dependencies between any of these. The framework can be seen as a generalisation of Henk Barendregt, Barendregt's lambda cube, in the sense that all corners of the cube can be represented as instances of a PTS with just two sorts. In fact, Barendregt (1991) framed his cube in this setting. Pure type systems may obscure the distinction between ''types'' and ''terms'' and collapse the type hierarchy, as is the case with the calculus of constructions, but this is not generally the case, e.g. the simply typed lambda calculus allows only terms to depend on terms. Pure type systems were independently introduced by Stefano Berardi (1988) and Jan Terlouw (1989). Barendregt discussed them at length in his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church Encoding
In mathematics, Church encoding is a means of representing data and operators in the lambda calculus. The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church, who first encoded data in the lambda calculus this way. Terms that are usually considered primitive in other notations (such as integers, Booleans, pairs, lists, and tagged unions) are mapped to higher-order functions under Church encoding. The Church–Turing thesis asserts that any computable operator (and its operands) can be represented under Church encoding. In the untyped lambda calculus the only primitive data type is the function. Use A straightforward implementation of Church encoding slows some access operations from O(1) to O(n), where n is the size of the data structure, making Church encoding impractical. Research has shown that this can be addressed by targeted optimizations, but most functional programming languages instead expand their i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Variable
In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. A ''free variable'' is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. The idea is related to a ''placeholder'' (a symbol that will later be replaced by some value), or a wildcard character that stands for an unspecified symbol. In computer programming, the term free variable refers to variables used in a function that are neither local variables nor parameters of that function. The term non-local variable is often a synonym in this context. An instance of a variable symbol is ''bound'', in contrast, if the value of that variable symbol has been bound to a specific value or range of va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rule Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the Logical form, logical structure of Validity (logic), valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Backus–Naur Form
In computer science, Backus–Naur form (BNF, pronounced ), also known as Backus normal form, is a notation system for defining the Syntax (programming languages), syntax of Programming language, programming languages and other Formal language, formal languages, developed by John Backus and Peter Naur. It is a metasyntax for Context-free grammar, context-free grammars, providing a precise way to outline the rules of a language's structure. It has been widely used in official specifications, manuals, and textbooks on programming language theory, as well as to describe Document format, document formats, Instruction set, instruction sets, and Communication protocol, communication protocols. Over time, variations such as extended Backus–Naur form (EBNF) and augmented Backus–Naur form (ABNF) have emerged, building on the original framework with added features. Structure BNF specifications outline how symbols are combined to form syntactically valid sequences. Each BNF consists of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Predicate Calculus
Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: **Predicate (mathematical logic) ** Propositional function **Finitary relation, or n-ary predicate ** Boolean-valued function ** Syntactic predicate, in formal grammars and parsers **Functional predicate * Predication (computer architecture) *in United States law, the basis or foundation of something ** Predicate crime **Predicate rules, in the U.S. Title 21 CFR Part 11 * Predicate, a term used in some European context for either nobles' honorifics or for nobiliary particles See also * Predicate logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables ove ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]