HOME





C. P. Ramanujam
Chakravarthi Padmanabhan Ramanujam (9 January 1938 – 27 October 1974) was an Indian mathematician who worked in the fields of number theory and algebraic geometry. He was elected a fellow of the Indian Academy of Sciences in 1973. Like his namesake Srinivasa Ramanujan, Ramanujam also had a very short life. As David Mumford put it, Ramanujam felt that the spirit of mathematics demanded of him not merely routine developments but the right theorem on any given topic. "He wanted mathematics to be beautiful and to be clear and simple. He was sometimes tormented by the difficulty of these high standards, but in retrospect, it is clear to us how often he succeeded in adding to our knowledge, results both new, beautiful and with a genuinely original stamp". Early life and education Ramanujam was born to a Tamil family on 9 January 1938 in Madras (now Chennai), India, as the eldest of seven, to Chakravarthi Srinivasa Padmanabhan. He finished his schooling in Town Higher Secondary S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chennai
Chennai, also known as Madras (List of renamed places in India#Tamil Nadu, its official name until 1996), is the capital city, capital and List of cities in Tamil Nadu by population, largest city of Tamil Nadu, the southernmost states and territories of India, state of India. It is located on the Coromandel Coast of the Bay of Bengal. According to the 2011 Census of India, 2011 Indian census, Chennai is the List of most populous cities in India, sixth-most-populous city in India and forms the List of million-plus urban agglomerations in India, fourth-most-populous urban agglomeration. Incorporated in 1688, the Greater Chennai Corporation is the oldest municipal corporation in India and the second oldest in the world after City of London Corporation, London. Historically, the region was part of the Chola dynasty, Chola, Pandya dynasty, Pandya, Pallava dynasty, Pallava and Vijayanagara Empire, Vijayanagara kingdoms during various eras. The coastal land which then contained th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mumbai
Mumbai ( ; ), also known as Bombay ( ; its official name until 1995), is the capital city of the Indian state of Maharashtra. Mumbai is the financial capital and the most populous city proper of India with an estimated population of 12.5 million (1.25  crore). Mumbai is the centre of the Mumbai Metropolitan Region, the seventh-most populous metropolitan area in the world with a population of over 23 million (2.3 crore). Mumbai lies on the Konkan coast on the west coast of India and has a deep natural harbour. In 2008, Mumbai was named an alpha world city. Mumbai has the highest number of billionaires out of any city in Asia. The seven islands that constitute Mumbai were earlier home to communities of Marathi language-speaking Koli people. For centuries, the seven islands of Bombay were under the control of successive indigenous rulers before being ceded to the Portuguese Empire, and subsequently to the East India Company in 1661, as part of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any Field (mathematics), field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those Complex torus, complex tori that can be holomorphic, holomorphically embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Igor Shafarevich
Igor Rostislavovich Shafarevich (; 3 June 1923 – 19 February 2017) was a Soviet and Russian mathematician who contributed to algebraic number theory and algebraic geometry. Outside mathematics, he wrote books and articles that criticised socialism and other books which were described as anti-semitic. Mathematics From his early years, Shafarevich made fundamental contributions to several parts of mathematics including algebraic number theory, algebraic geometry and arithmetic algebraic geometry. In particular, in algebraic number theory, the Shafarevich–Weil theorem extends the commutative reciprocity map to the case of Galois groups, which are central extensions of abelian groups by finite groups. Shafarevich was the first mathematician to give a completely self-contained formula for the Hilbert pairing, thus initiating an important branch of the study of explicit formulas in number theory. Another famous (and slightly incomplete) result is Shafarevich's theorem on solvable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, that is, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind the rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. These operations make the field into an abelian group under addition, and they make the nonzero elements of the field into another abelian group under multiplicat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Waring's Problem
In number theory, Waring's problem asks whether each natural number ''k'' has an associated positive integer ''s'' such that every natural number is the sum of at most ''s'' natural numbers raised to the power ''k''. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants". Relationship with Lagrange's four-square theorem Long before Waring posed his problem, Diophantus had asked whether every positive integer could be represented as the sum of four perfect squares greater than or equal to zero. This question later became known as Bachet's conjecture, after the 1621 translation of Diophantus by Claude Gaspard Bachet de Méziriac, and it was solved by Joseph-Louis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carl Ludwig Siegel
Carl Ludwig Siegel (31 December 1896 – 4 April 1981) was a German mathematician specialising in analytic number theory. He is known for, amongst other things, his contributions to the Thue–Siegel–Roth theorem in Diophantine approximation, Siegel's method, Siegel's lemma and the Siegel mass formula for quadratic forms. He has been named one of the most important mathematicians of the 20th century.Pérez, R. A. (2011''A brief but historic article of Siegel'' NAMS 58(4), 558–566. André Weil, without hesitation, named Siegel as the greatest mathematician of the first half of the 20th century. Atle Selberg said of Siegel and his work: Biography Siegel was born in Berlin, where he enrolled at the Humboldt University in Berlin in 1915 as a student in mathematics, astronomy, and physics. Amongst his teachers were Max Planck and Ferdinand Georg Frobenius, whose influence made the young Siegel abandon astronomy and turn towards number theory instead. His best-known student ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doctoral Advisor
A doctoral advisor (also dissertation director, dissertation advisor; or doctoral supervisor) is a member of a university faculty whose role is to guide graduate students who are candidates for a doctorate, helping them select coursework, as well as shaping, refining and directing the students' choice of sub-discipline in which they will be examined or on which they will write a dissertation. Students generally choose advisors based on their areas of interest within their discipline, their desire to work closely with particular graduate faculty, and the willingness and availability of those faculty to work with them. In some countries, the student's advisor is the chair of the dissertation committee or the examination committee. In some cases, though, the person who serves those roles may be different from the faculty member who has most closely advised the student. For instance, in the Dutch academic system, only full professors (''hoogleraren'') and associate professors (sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. * Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]