HOME





Byerlee's Law
In rheology, Byerlee's law, also known as Byerlee's friction law concerns the shear stress (τ) required to slide one rock over another. The rocks have macroscopically flat surfaces, but the surfaces have small asperities that make them "rough." For a given experiment and at normal stresses (σn) below about 2000 bars (200 MPa) the shear stress increases approximately linearly with the normal stress (τ = 0.85 σn, where τ and σn is in units of MPa) and is highly dependent on rock type and the character (roughness) of the surfaces, see Mohr-Coulomb friction law. Byerlee's law states that with increased normal stress the required shear stress continues to increase, but the ''rate'' of increase decreases (τ = 50 + 0.6σn), where τ and σn are in units of MPa, and becomes nearly independent of rock type. The law describes an important property of crustal rock, and can be used to determine when slip along a geological fault takes place. The law is named after the American geop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rheology
Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied forcRheology is the branch of physics that deals with the deformation and flow of materials, both solids and liquids.W. R. Schowalter (1978) Mechanics of Non-Newtonian Fluids Pergamon The term '' rheology'' was coined by Eugene C. Bingham, a professor at Lafayette College, in 1920 from a suggestion by a colleague, Markus Reiner.The Deborah Number
The term was inspired by the aphorism of Heraclitus (often mistakenly attributed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Stress
Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. General shear stress The formula to calculate average shear stress or force per unit area is: \tau = ,where is the force applied and is the cross-sectional area. The area involved corresponds to the material face (geometry), face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force. Other forms Wall shear stress Wall shear stress expresses the retarding force (per unit area) from a wall in the layers of a fluid flowing next to the wall. It is defined as:\tau_w := \mu\left.\frac\_,where is the dynamic viscosity, is the flow velocity, and is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stress (mechanics)
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to ''compressive'' stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m2) or pascal (Pa). Stress expresses the internal forces that neighbouring particles of a continuous material exert on each other, while ''strain'' is the measure of the relative deformation of the material. For example, when a solid vertical bar is supporting an overhead weight, each particle in the bar pushes on the particles immediately below it. When a liquid is in a closed container under pressure, each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crust (geology)
In geology, the crust is the outermost solid shell of a planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be defined based on its phase (solid crust vs. liquid mantle). The crusts of Earth, Mercury, Venus, Mars, Io, the Moon and other planetary bodies formed via igneous processes and were later modified by erosion, impact cratering, volcanism, and sedimentation. Most terrestrial planets have fairly uniform crusts. Earth, however, has two distinct types: continental crust and oceanic crust. These two types have different chemical compositions and physical properties and were formed by different geological processes. Types of crust Planetary geologists divide crust into three categories based on how and when it formed. Primary crust / primordial crust This is a planet's "original" crust. It forms from solidification of a magma ocean. Toward the end o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geological Fault
Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences, including hydrology. It is integrated with Earth system science and planetary science. Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages. By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth. Geology provides evidence for plate tectonics, the ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archie's Law
In petrophysics, Archie's law is a purely empirical law relating the measured electrical conductivity of a porous rock to its porosity and fluid saturation. It is named after Gus Archie (1907–1978) and laid the foundation for modern well log interpretation, as it relates borehole electrical conductivity measurements to hydrocarbon saturations. Statement of the law The ''in-situ'' electrical conductivity (C_t) of a fluid saturated, porous rock is described as :C_t = \frac C_w \phi^m S_w^n where * \phi\,\! denotes the porosity * C_w represents the electrical conductivity of the aqueous solution (fluid or liquid phase) * S_w is the water saturation, or more generally the fluid saturation, of the pores * m is the cementation exponent of the rock (usually in the range 1.8–2.0 for sandstones) * n is the saturation exponent (usually close to 2) * a is the tortuosity factor. This relationship attempts to describe ion flow (mostly sodium and chloride) in clean, consolid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birch's Law
Birch's law, discovered by the geophysicist Francis Birch, establishes a linear relation between compressional wave velocity and density of rocks and minerals: : v_\mathrm = a( \bar M ) + b \rho where \, \bar M \, is the mean atomic mass in formula units and \, a(x) \, is an empirical function determined by experiment. Example The mean atomic mass of forsterite (Mg2SiO4) is equal to the sum of the atomic masses divided by the number of atoms in the formula: : \bar = \frac = 20.13 ~. Typical oxides and silicates in the mantle have values close to 20, while in the Earth's core it is close to 50. Applications Birch's law applies to rocks that are under pressures of a few tens of gigapascals, enough for most cracks to close. It can be used in the discussion of geophysical data. The law is used in forming compositional and mineralogical models of the mantle by using the change in the velocity of the seismic wave and its relationship with a change in density of the material the w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geophysics
Geophysics () is a subject of natural science concerned with the physical processes and Physical property, properties of Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists conduct investigations across a wide range of scientific disciplines. The term ''geophysics'' classically refers to solid earth applications: Earth's figure of the Earth, shape; its gravitational, Earth's magnetic field, magnetic fields, and electromagnetic fields; its structure of the Earth, internal structure and Earth#Chemical composition, composition; its geodynamics, dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; geophysical fluid dynamics, fluid dynamics of the oceans and the atmosphere; atmospheric electricity, electricity and magnetism in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rheology
Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied forcRheology is the branch of physics that deals with the deformation and flow of materials, both solids and liquids.W. R. Schowalter (1978) Mechanics of Non-Newtonian Fluids Pergamon The term '' rheology'' was coined by Eugene C. Bingham, a professor at Lafayette College, in 1920 from a suggestion by a colleague, Markus Reiner.The Deborah Number
The term was inspired by the aphorism of Heraclitus (often mistakenly attributed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]