Brocard's Conjecture
In number theory, Brocard's conjecture is the conjecture that there are at least four prime numbers between (''p''''n'')2 and (''p''''n''+1)2, where ''p''''n'' is the ''n''th prime number, for every ''n'' ≥ 2. The conjecture is named after Henri Brocard. It is widely believed that this conjecture is true. However, it remains unproven as of 2025. The number of primes between prime squares is 2, 5, 6, 15, 9, 22, 11, 27, ... . Legendre's conjecture that there is a prime between consecutive integer squares directly implies that there are at least two primes between prime squares for ''p''''n'' ≥ 3 since ''p''''n''+1 − ''p''''n'' ≥ 2. See also * Prime-counting function In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number . It is denoted by (unrelated to the number ). A symmetric variant seen sometimes is , which is equal ... Notes Conjectures about prime numbers Unsolved ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Brocard
Pierre René Jean Baptiste Henri Brocard (; 12 May 1845 – 16 January 1922) was a French meteorologist and mathematician, in particular a geometer. His best-known achievement is the invention and discovery of the properties of the Brocard points, the Brocard circle, and the Brocard triangle, all bearing his name. Contemporary mathematician Nathan Court wrote that he, along with Émile Lemoine and Joseph Neuberg, was one of the three co-founders of modern triangle geometry. He was awarded the Ordre des Palmes Académiques, and was an officer of the Légion d'honneur. He spent most of his life studying meteorology as an officer in the French Navy, but seems to have made no notable original contributions to the subject. Biography Early years Pierre René Jean Baptiste Henri Brocard was born on 12 May 1845, in Vignot, Meuse to Elizabeth Auguste Liouville and Jean Sebastien Brocard. He attended the Lycée in Marseille as a young child, and then the Lycée in Strasbour ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Legendre's Conjecture
Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between n^2 and (n+1)^2 for every positive integer n. The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers. Prime gaps If Legendre's conjecture is true, the gap between any prime ''p'' and the next largest prime would be O(\sqrt\,), as expressed in big O notation. It is one of a family of results and conjectures related to prime gaps, that is, to the spacing between prime numbers. Others include Bertrand's postulate, on the existence of a prime between n and 2n, Oppermann's conjecture on the existence of primes between n^2, n(n+1), and (n+1)^2, Andrica's conjecture and Brocard's conjecture on the existence of primes between squares of consecutive primes, and Cramér's conjecture that the gaps are always much smaller, of the order (\log p)^2. If Cramér's conjecture is true, Legendre's conjecture would ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime-counting Function
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number . It is denoted by (unrelated to the number ). A symmetric variant seen sometimes is , which is equal to if is exactly a prime number, and equal to otherwise. That is, the number of prime numbers less than , plus half if equals a prime. Growth rate Of great interest in number theory is the growth rate of the prime-counting function. It was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately \frac where is the natural logarithm, in the sense that \lim_ \frac=1. This statement is the prime number theorem. An equivalent statement is \lim_\frac=1 where is the logarithmic integral function. The prime number theorem was first proved in 1896 by Jacques Hadamard and by Charles de la Vallée Poussin independently, using properties of the Riemann zeta function introduced by Riemann in 1859. Proof ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjectures About Prime Numbers
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 1012 (1.2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |