Brahmagupta's Problem
This problem was given in India by the mathematician Brahmagupta in 628 AD in his treatise '' Brahma Sputa Siddhanta'': Solve the Pell's equation : x^2 - 92y^2 = 1 for integers x,y>0. Brahmagupta gave the smallest solution as : (x,y) = (1151,120). See also *Brahmagupta *Indian mathematics *List of Indian mathematicians *Pell's equation *Indeterminate equation *Diophantine equation ''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real n ... External links Brahmagupta Diophantine equations {{math-hist-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Indian Mathematics
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, Varāhamihira, and Madhava of Sangamagrama, Madhava. The Decimal, decimal number system in use today: "The measure of the genius of Indian civilisation, to which we owe our modern (number) system, is all the greater in that it was the only one in all history to have achieved this triumph. Some cultures succeeded, earlier than the Indian, in discovering one or at best two of the characteristics of this intellectual feat. But none of them managed to bring together into a complete and coherent system the necessary and sufficient conditions for a number-system with the same potential as our own." was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of 0 (number), ze ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Brahmagupta
Brahmagupta ( – ) was an Indian Indian mathematics, mathematician and Indian astronomy, astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established Siddhanta, doctrine of Brahma", dated 628), a theoretical treatise, and the ''Khandakhadyaka'' ("edible bite", dated 665), a more practical text. In 628 CE, Brahmagupta first described gravity as an attractive force, and used the term "gurutvākarṣaṇam (गुरुत्वाकर्षणम्)" in Sanskrit to describe it. He is also credited with the first clear description of the quadratic formula (the solution of the quadratic equation)Bradley, Michael. ''The Birth of Mathematics: Ancient Times to 1300'', p. 86 (Infobase Publishing 2006) in his main work, the ''Brāhma-sphuṭa-siddhānta''. Life and career Brahmagupta, according to his own statement, was born in 598 CE. Born in ''Bhillamāla'' in Gurjaradesa (modern Bhinmal in Rajasthan, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Pell's Equation
Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form x^2 - ny^2 = 1, where ''n'' is a given positive Square number, nonsquare integer, and integer solutions are sought for ''x'' and ''y''. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose ''x'' and ''y'' coordinates are both integers, such as the Triviality (mathematics), trivial solution with ''x'' = 1 and ''y'' = 0. Joseph Louis Lagrange proved that, as long as ''n'' is not a square number, perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately Diophantine approximation, approximate the square root of ''n'' by rational numbers of the form ''x''/''y''. This equation was first studied extensively Indian mathematics, in India starting with Brahmagupta, who found an integer solution to 92x^2 + 1 = y^2 in his '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
List Of Indian Mathematicians
Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians in the modern era. One of such works is Hindu numeral system which is predominantly used today and is likely to be used in the future. Ancient (Before 320 CE) * Shulba sutras (around 1st millenium BCE) * Baudhayana sutras (fl. c. 900 BCE) *Yajnavalkya (700 BCE) * Manava (fl. 750–650 BCE) * Apastamba Dharmasutra (c. 600 BCE) *''Pāṇini'' (c. 520–460 BCE) * Kātyāyana (fl. c. 300 BCE) * Akṣapada Gautama(c. 600 BCE–200 CE) * Bharata Muni (200 BCE-200 CE) * Pingala (c. 3rd/2nd century BCE) * Bhadrabahu (367 – 298 BCE) * Umasvati (c. 200 CE) * Yavaneśvara (2nd century) * Vasishtha Siddhanta, 4th century CE Classical (320 CE–520 CE) * Vasishtha Siddhanta, 4th century CE * Aryabhata (476–550 CE) * Yativrsabha (500–570) * Varahamihira (505–587 CE) * Yativṛṣabha, (6th-century CE) * Virahanka (6th century CE) Ear ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Indeterminate Equation
In mathematics, particularly in number theory, an indeterminate system has fewer equations than unknowns but an additional a set of constraints on the unknowns, such as restrictions that the values be integers. In modern times indeterminate equations are often called Diophantine equations. Examples Linear indeterminate equations An example linear indeterminate equation arises from imagining two equally rich men, one with 5 rubies, 8 sapphires, 7 pearls and 90 gold coins; the other has 7, 9, 6 and 62 gold coins; find the prices (y, c, n) of the respective gems in gold coins. As they are equally rich: 5y + 8c + 7n + 90 = 7y + 9c + 6n + 62 Bhāskara II gave an general approach to this kind of problem by assigning a fixed integer to one (or N-2 in general) of the unknowns, e.g. n=1, resulting a series of possible solutions like (y, c, n)=(14, 1, 1), (13, 3, 1). For given integers , and , the general linear indeterminant equation is ax + by = n with unknowns and restricted to in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Diophantine Equation
''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated ... * Diophantine equation * Diophantine quintuple * Diophantine set {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |