HOME





Bounded Quantifier
In the study of formal theories in mathematical logic, bounded quantifiers (a.k.a. restricted quantifiers) are often included in a formal language in addition to the standard quantifiers "∀" and "∃". Bounded quantifiers differ from "∀" and "∃" in that bounded quantifiers restrict the range of the quantified variable. The study of bounded quantifiers is motivated by the fact that determining whether a sentence with only bounded quantifiers is true is often not as difficult as determining whether an arbitrary sentence is true. Examples Examples of bounded quantifiers in the context of real analysis include: * \forall x > 0 - for all ''x'' where ''x'' is larger than 0 * \exists y 0 \quad \exists y < 0 \quad (x = y^2) - every positive number is the square of a negative number


Bounded quantifiers in arithmetic

Suppose that ''L'' is the language of

picture info

Arithmetical Hierarchy
In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).P. G. Hinman, ''Recursion-Theoretic Hierarchies'' (p.89), Perspectives in Logic, 1978. Springer-Verlag Berlin Heidelberg, ISBN 3-540-07904-1. The arithmetical hierarchy is important in computability theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic. The Tarski–Kuratowski algorithm provides an easy way to get an upper bound on the classifications assigned to a formula and the set it defines. The hyperarithmetical hierarchy and the analytical hierarchy extend the arithmetical hierarchy to classify additional formulas and set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset of a set with the cardinality is a function from to the two-element set , denoted as , a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantifier (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first-order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The most commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic: each can be defined in terms of the other using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Typed Lambda Calculus
A typed lambda calculus is a typed formalism that uses the lambda symbol (\lambda) to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and ''untyped lambda calculus'' a special case with only one type. Typed lambda calculi are foundational programming languages and are the base of typed functional programming languages such as ML and Haskell and, more indirectly, typed imperative programming languages. Typed lambda calculi play an important role in the design of type systems for programming languages; here, typability usually captures desirable properties of the program (e.g., the program will not cause a memory acce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




System F
System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds. Whereas simply typed lambda calculus has variables ranging over terms, and binders for them, System F additionally has variables ranging over ''types'', and binders for them. As an example, the fact that the identity function can have any type of the form ''A'' → ''A'' would be formalized in System F as the judgement :\vdash \Lambda\alpha. \lambda x^\alpha.x: \forall\alpha.\alpha \to \alpha where \alpha is a type variable. The upper-case \Lambda is traditionally used to denote type-level functions, as opposed to the lower-ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Theory
In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that have been proposed as foundations are: * Typed λ-calculus of Alonzo Church * Intuitionistic type theory of Per Martin-Löf Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid paradoxes in naive set theory and formal logic, such as Russell's paradox which demonstrates that, without proper axioms, it is possible to define the set of all sets that are not members of themselves; this set both contains itself and does not contain itself. Between 1902 and 1908, Bertrand Russell proposed various solutions to this problem. By 1908, Russell arrive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subtyping
In programming language theory, subtyping (also called subtype polymorphism or inclusion polymorphism) is a form of type polymorphism. A ''subtype'' is a datatype that is related to another datatype (the ''supertype'') by some notion of substitutability, meaning that program elements (typically subroutines or functions), written to operate on elements of the supertype, can also operate on elements of the subtype. If S is a subtype of T, the subtyping relation (written as ,  , or   ) means that any term of type S can ''safely be used'' in ''any context'' where a term of type T is expected. The precise semantics of subtyping here crucially depends on the particulars of how ''"safely be used"'' and ''"any context"'' are defined by a given type formalism or programming language. The type system of a programming language essentially defines its own subtyping relation, which may well be trivial, should the language support no (or very little) conversion mechanisms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Impredicativity
In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions. The opposite of impredicativity is predicativity, which essentially entails building stratified (or ramified) theories where quantification over a type at one 'level' results in types at a new, higher, level. A prototypical example is intuitionistic type theory, which retains ramification (without the explicit levels) so as to discard impredicativity. The 'levels' here correspond to the number of layers of dependency in a term definition. Russell's paradox is a famous example of an impredicative construction—namely the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Schema Of Predicative Separation
In axiomatic set theory, the axiom schema of predicative separation, or of restricted, or Δ0 separation, is a schema of axioms which is a restriction of the usual axiom schema of separation in Zermelo–Fraenkel set theory. This name Δ0 stems from the Lévy hierarchy, in analogy with the arithmetic hierarchy. Statement The axiom asserts only the existence of a subset of a set if that subset can be defined without reference to the entire universe of sets. The formal statement of this is the same as full separation schema, but with a restriction on the formulas that may be used: For any formula φ, :\forall x \; \exists y \; \forall z \; (z \in y \leftrightarrow z \in x \wedge \varphi(z)) provided that φ contains only bounded quantifiers and, as usual, that the variable ''y'' is not free in it. So all quantifiers in φ, if any, must appear in the forms : \exists u \in v \; \psi(u) : \forall u \in v \; \psi(u) for some sub-formula ψ and, of course, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constructive Set Theory
Constructivism may refer to: Art and architecture * Constructivism (art), an early 20th-century artistic movement that extols art as a practice for social purposes * Constructivist architecture, an architectural movement in the Soviet Union in the 1920s and 1930s * British Constructivists, a group of British artists who were active between 1951 and 1955. Education * Constructivism (philosophy of education), a theory about the nature of learning that focuses on how humans make meaning from their experiences * Constructivism in science education * Constructivist teaching methods, based on constructivist learning theory Mathematics * Constructivism (philosophy of mathematics), a logic for founding mathematics that accepts only objects that can be effectively constructed * Constructivist set theory * Constructivist type theory Philosophy * Constructivism (philosophy of mathematics), a philosophical view that asserts the necessity of constructing a mathematical object to p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]