HOME





Ample Line Bundle
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective spaces. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bundl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ample (company)
Ample is a San Francisco-based startup that develops battery swapping technology and stations for electric vehicles. History Ample was founded in 2014. In 2021, they raised $160 million in a Series C funding round. Technology The company operates drive-in stations in the San Francisco Bay Area which robotically swap out vehicle batteries, servicing vehicles including the Mitsubishi Fuso Canter electric truck. Ample produces modular Electric vehicle battery, batteries which replace vehicles' original batteries. Sources compare Ample's business model to previous failed battery swapping startup Better Place (company), Better Place, noting that Ample produces "standard, swappable batteries under the belly of any car without its manufacturer having to engineer vehicles around them". The firm is working with automakers, including Fisker Automotive, Fisker and Stellantis, to adapt battery swapping technology to different vehicle types and to be able to option vehicles with repla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homogeneous Polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial x^3 + 3 x^2 y + z^7 is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial.However, as some authors do not make a clear distinction between a polynomial and its associated function, the terms ''homogeneous polynomial'' and ''form'' are sometimes considered as synonymous. A binary form is a form in two variables. A ''form'' is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over any basis. A polynomial of degree 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stein Manifold
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of ''n'' complex dimensions. They were introduced by and named after . A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry. Definition Suppose X is a complex manifold of complex dimension n and let \mathcal O(X) denote the ring of holomorphic functions on X. We call X a Stein manifold if the following conditions hold: * X is holomorphically convex, i.e. for every compact subset K \subset X, the so-called '' holomorphically convex hull'', ::\bar K = \left \, :is also a ''compact'' subset of X. * X is holomorphically separable, i.e. if x \neq y are two points in X, then there exists f \in \mathcal O(X) such that f(x) \neq f(y). Non-compact Riemann surfaces are Stein manifolds Let ''X'' be a connected, non-compact Riem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cartan's Theorem A
In mathematics, Cartan's theorems A and B are two results proved by Henri Cartan around 1951, concerning a coherent sheaf on a Stein manifold . They are significant both as applied to several complex variables, and in the general development of sheaf cohomology. Theorem B is stated in cohomological terms (a formulation that Cartan (1953, p. 51) attributes to J.-P. Serre): Analogous properties were established by Serre (1957) for coherent sheaves in algebraic geometry, when is an affine scheme. The analogue of Theorem B in this context is as follows : These theorems have many important applications. For instance, they imply that a holomorphic function on a closed complex submanifold, , of a Stein manifold can be extended to a holomorphic function on all of . At a deeper level, these theorems were used by Jean-Pierre Serre to prove the GAGA theorem. Theorem B is sharp in the sense that if for all coherent sheaves on a complex manifold (resp. quasi-coherent sheave ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Geometry
In mathematics, complex geometry is the study of geometry, geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of space (mathematics), spaces such as complex manifolds and Complex algebraic variety, complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaf, coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis. Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Scheme
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with a sheaf of rings. Zariski topology For any ideal I of R, define V_I to be the set of prime ideals containing I. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\big\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows: For f\in R, define D_f to be the set of prime ideals of R not containing f. Then each D_f is an open subset of \operatorname(R), and \big\ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: In fact, the maximal ideals in R are precisely the closed points in this topology. By the same reasoning, \operatorname(R) is not, in general, a T1 space. However, \operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules that has a local presentation, that is, every point in X has an open neighborhood U in which there is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nef Line Bundle
In algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of a nef divisor. Definition More generally, a line bundle ''L'' on a proper scheme ''X'' over a field ''k'' is said to be nef if it has nonnegative degree on every (closed irreducible) curve in ''X''. (The degree of a line bundle ''L'' on a proper curve ''C'' over ''k'' is the degree of the divisor (''s'') of any nonzero rational section ''s'' of ''L''.) A line bundle may also be called an invertible sheaf. The term "nef" was introduced by Miles Reid as a replacement for the older terms "arithmetically effective" and "numerically effective", as well as for the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proper Morphism
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. Definition A morphism f:X\to Y of schemes is called universally closed if for every scheme Z with a morphism Z\to Y, the projection from the fiber product :X \times_Y Z \to Z is a closed map of the underlying topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue Field
In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and \mathfrak is a maximal ideal, then the residue field is the quotient ring k=R/\mathfrak, which is a field. Frequently, R is a local ring and \mathfrak is then its unique maximal ideal. In abstract algebra, the splitting field of a polynomial is constructed using residue fields. Residue fields also applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the ''natural domain'' for the coordinates of the point. Definition Suppose that R is a commutative local ring, with maximal ideal \mathfrak. Then the residue field is the quotient ring R/\mathfrak. Now suppose that X is a scheme and x is a point of X. By the definition of a scheme, we may find an affine neighbourhood \mathcal = \text(A) of x, with some commutative ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Section
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as Set (mathematics), sets, abelian groups, Ring (mathematics), rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous function, continuous function (mathematics), functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets cover (topology), covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract Mathematical object, objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]