Alfred Tarski
Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, type theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school, Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.#FefA, Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Warsaw
Warsaw, officially the Capital City of Warsaw, is the capital and List of cities and towns in Poland, largest city of Poland. The metropolis stands on the Vistula, River Vistula in east-central Poland. Its population is officially estimated at 1.86 million residents within a Warsaw metropolitan area, greater metropolitan area of 3.27 million residents, which makes Warsaw the List of cities in the European Union by population within city limits, 6th most-populous city in the European Union. The city area measures and comprises List of districts and neighbourhoods of Warsaw, 18 districts, while the metropolitan area covers . Warsaw is classified as an Globalization and World Cities Research Network#Alpha 2, alpha global city, a major political, economic and cultural hub, and the country's seat of government. It is also the capital of the Masovian Voivodeship. Warsaw traces its origins to a small fishing town in Masovia. The city rose to prominence in the late 16th cent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Julia Robinson
Julia Hall Bowman Robinson (December 8, 1919July 30, 1985) was an American mathematician noted for her contributions to the fields of computability theory and computational complexity theory—most notably in decision problems. Her work on Hilbert's tenth problem (now known as Matiyasevich's theorem or the MRDP theorem) played a crucial role in its ultimate resolution. Robinson was a 1983 MacArthur Fellow. Early years Robinson was born in St. Louis, Missouri, the daughter of Ralph Bowers Bowman and Helen (Hall) Bowman. Her father owned a machine equipment company while her mother was a school teacher before marriage. Her mother died when Robinson was 2 years old and her father remarried. Her older sister was the mathematical popularizer and biographer Constance Reid and her younger sister is Billie Comstock. When she was 9 years old, she was diagnosed with scarlet fever, which was shortly followed by rheumatic fever. This caused her to miss two years of school. When she was w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarski Monster Group
In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group ''G'', such that every proper subgroup ''H'' of ''G'', other than the identity subgroup, is a cyclic group of order a fixed prime number ''p''. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski ''p''-group for every prime ''p'' > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory, and was inf ... and the von Neumann conjecture. Definition Let p be a fixed prime number. An infinite group G is called a Tarski monster group for p if every nontrivial subgroup (i.e. ev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarski's Axioms
Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity (i.e. is formulable as an elementary theory). As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive predicates are "betweenness" (expressing the fact that a point lies on a line segment between two other points) and "congruence" (expressing the fact that the distance between two points equals the distance between two other points). The system contains infinitely many axioms. The axiom system is due to Alfred Tarski who first presented it in 1926. Other modern axiomizations of Euclidean geometry are Hilbert's axioms (1899) and Birkhoff's axioms (1932). Using his axiom system, Tarski was able to show that the first-order theory of Euclidean geometry is consistent, complete and decidable: every sentence in its language is either provable o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarski-style Universes
In mathematics, and particularly in set theory, category theory, type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation. In set theory, universes are often classes that contain (as elements) all sets for which one hopes to prove a particular theorem. These classes can serve as inner models for various axiomatic systems such as ZFC or Morse–Kelley set theory. Universes are of critical importance to formalizing concepts in category theory inside set-theoretical foundations. For instance, the canonical motivating example of a category is Set, the category of all sets, which cannot be formalized in a set theory without some notion of a universe. In type theory, a universe is a type whose elements are types. In a specific context Perhaps the simplest version is that ''any'' set can be a universe, so long as the object of study is confined to that particular set. If the object of s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach–Tarski Paradox
The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them, without changing their original shape. However, the pieces themselves are not "solids" in the traditional sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces. An alternative form of the theorem states that given any two "reasonable" solid objects (such as a small ball and a huge ball), the cut pieces of either one can be reassembled into the other. This is often stated informally as "a pea can be chopped up and reassembled into the Sun" and called the "pea and the Sun paradox". The theorem is a veridical paradox: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finitary Relation
In mathematics, a finitary relation over a sequence of sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples , each being a sequence of elements ''x''''i'' in the corresponding ''X''''i''. Typically, the relation describes a possible connection between the elements of an ''n''-tuple. For example, the relation "''x'' is divisible by ''y'' and ''z''" consists of the set of 3-tuples such that when substituted to ''x'', ''y'' and ''z'', respectively, make the sentence true. The non-negative integer ''n'' that gives the number of "places" in the relation is called the ''arity'', ''adicity'' or ''degree'' of the relation. A relation with ''n'' "places" is variously called an ''n''-ary relation, an ''n''-adic relation or a relation of degree ''n''. Relations with a finite number of places are called ''finitary relations'' (or simply ''relations'' if the context is clear). It is also possible to generalize the concept to ''infinitary relations'' with Sequence, i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their Structure (mathematical logic), models (those Structure (mathematical logic), structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarski's Undefinability Theorem
Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that "arithmetical truth cannot be defined in arithmetic". The theorem applies more generally to any sufficiently strong formal system, showing that truth in the standard model of the system cannot be defined within the system. History In 1931, Kurt Gödel published the incompleteness theorems, which he proved in part by showing how to represent the syntax of formal logic within first-order arithmetic. Each expression of the formal language of arithmetic is assigned a distinct number. This procedure is known variously as Gödel numbering, ''coding'' and, more generally, as arithmetization. In particular, various ''sets'' of expressions are coded as sets of numbers. For various syntactic properties (such as ''being a formula'', ''being a sentence'', etc.), these s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convention T
A semantic theory of truth is a theory of truth in the philosophy of language which holds that truth is a property of sentences. Origin The semantic conception of truth, which is related in different ways to both the correspondence and deflationary conceptions, is due to work by Polish logician Alfred Tarski. Tarski, in "On the Concept of Truth in Formal Languages" (1935), attempted to formulate a new theory of truth in order to resolve the liar paradox. In the course of this he made several metamathematical discoveries, most notably Tarski's undefinability theorem using the same formal technique Kurt Gödel used in his incompleteness theorems. Roughly, this states that a truth-predicate satisfying Convention T for the sentences of a given language cannot be defined ''within'' that language. Tarski's theory of truth To formulate linguistic theories without semantic paradoxes such as the liar paradox, it is generally necessary to distinguish the language that one is talkin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |