HOME



picture info

61 Cygni
61 Cygni is a binary star system in the constellation Cygnus (constellation), Cygnus, consisting of a pair of K-type main-sequence star, K-type dwarf stars that orbit each other in a period of about 659 years. Of apparent magnitude 5.20 and 6.05, respectively, they can be seen with binoculars in city skies or with the naked eye in rural areas without light pollution. 61 Cygni first attracted the attention of astronomers when its large proper motion was first demonstrated by Giuseppe Piazzi in 1804. In 1838, Friedrich Bessel measured its distance from Earth at about 10.4 light-years, very close to the actual value of about 11.4 light-years; this was the first distance estimate for any star other than the Sun, and the first star to have its stellar parallax measured. Among all stars or stellar systems listed in the latest Gaia catalogues, 61 Cygni has the sixth-highest proper motion, and the highest among all visible stars or systems.By convention, limitin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cygnus (constellation)
Cygnus is a northern constellation on the plane of the Milky Way, deriving its name from the Latinisation of names, Latinized Greek language, Greek word for swan. Cygnus is one of the most recognizable constellations of the northern summer and autumn, and it features a prominent asterism (astronomy), asterism known as the Northern Cross (asterism), Northern Cross (in contrast to the Southern Cross). Cygnus was among the 48 constellations listed by the 2nd century astronomer Ptolemy, and it remains one of the 88 modern constellations. Cygnus contains Deneb (ذنب, translit. ''ḏanab,'' tail)one of the brightest stars in the night sky and the most distant first-magnitude staras its "tail star" and one corner of the Summer Triangle the constellation forming an east pointing Altitude (triangle), altitude of the triangle. It also has some notable X-ray sources and the giant stellar association of Cygnus OB2. One of the stars of this association, NML Cygni, is one of the List of larg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apparent Magnitude
Apparent magnitude () is a measure of the Irradiance, brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction (astronomy), extinction of the object's light caused by interstellar dust along the sightline, line of sight to the observer. Unless stated otherwise, the word ''magnitude'' in astronomy usually refers to a celestial object's apparent magnitude. The magnitude scale likely dates to before the ancient Ancient Greek astronomy#Astronomy in the Greco-Roman and Late Antique eras, Roman astronomer Ptolemy, Claudius Ptolemy, whose Star catalogue, star catalog popularized the system by listing stars from First-magnitude star, 1st magnitude (brightest) to 6th magnitude (dimmest). The modern scale was mathematically defined to closely match this historical system by Norman Robert Pogson, Norman Pogson in 1856. The scale is reverse logarithmic scale, logarithmic: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Flamsteed Designation
A Flamsteed designation is a combination of a number and constellation name that uniquely identifies most naked eye stars in the 88 modern constellations, modern constellations visible from southern England. They are named after John Flamsteed, author of the ''Historia Coelestis Britannica'', the first major star catalogue compiled with the aid of a telescope. Flamsteed’s own catalogue did not include what are now known as Flamsteed numbers, but its listing of stars in each constellation provided the basis for later astronomers to add them. Description Flamsteed designations for stars are similar to Bayer designations, except that they use numbers instead of Greek and Roman letters. Each star is assigned a number and the Latin genitive of the constellation it lies in (see 88 modern constellations for a list of constellations and the genitive forms of their names). Flamsteed designations were assigned to 2554 stars. The numbers were originally assigned in order of increasing righ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Traditional Chinese Star Names
Chinese star names (Chinese language, Chinese: , ''xīng míng'') are named according to ancient Chinese astronomy and Chinese astrology, astrology. The sky is divided into Chinese constellations, star mansions (, ''xīng xiù'', also translated as "lodges") and asterisms (, ''xīng guān''). The ecliptic is divided into four sectors that are associated with the Four Symbols, guardians in Chinese mythology, and further into 28 mansions. Stars around the north celestial pole are grouped into three enclosures (, ''yuán''). The system of 283 asterisms under the Chinese constellations, Three Enclosures and Twenty-Eight Mansions was established by Chen Zhuo of the Three Kingdoms period, who synthesized ancient constellations and the asterisms created by early astronomers Shi Shen, Gan De and Wuxian (Shang dynasty), Wuxian. Since the Han dynasty, Han and Jin dynasty (266–420), Jin dynasties, stars have been given reference numbers within their asterisms in a system similar to the Bayer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Arabic Star Names
This is a list of Arabic star names. In Western astronomy, most of the accepted star names are Arabic, a few are Greek language, Greek and some are of unknown origin. Typically only bright stars have names. History of Arabic star names Very old star names originated among people who lived in the Arabian Peninsula more than a thousand years ago, after the rise of Islam. However, some Arabic language star names sprang up later in history, as translations of ancient Greek language descriptions. The astronomer Ptolemy, Claudius Ptolemy in his ''Almagest'' (2nd century) tabulated the celestial position and brightness (visual magnitude) of 1,025 stars. Ptolemy's book was translated into Arabic in the 8th and 9th centuries and became famous in Europe as a 12th-century Latin translation. Many of the Arabic-language star descriptions in the ''Almagest'' came to be widely used as names for stars. Ptolemy used a strategy of "figure reference" to identify stars according to their position ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radial Velocity
The radial velocity or line-of-sight velocity of a target with respect to an observer is the rate of change of the vector displacement between the two points. It is formulated as the vector projection of the target-observer relative velocity onto the relative direction or line-of-sight (LOS) connecting the two points. The radial speed or range rate is the temporal rate of the distance or range between the two points. It is a signed scalar quantity, formulated as the scalar projection of the relative velocity vector onto the LOS direction. Equivalently, radial speed equals the norm of the radial velocity, modulo the sign. In astronomy, the point is usually taken to be the observer on Earth, so the radial velocity then denotes the speed with which the object moves away from the Earth (or approaches it, for a negative radial velocity). Formulation Given a differentiable vector \mathbf r \in \mathbb^3 defining the instantaneous relative position of a target with respe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exoplanet
An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first detected in 1988, was confirmed in 2003. In 2016, it was recognized that the first possible evidence of an exoplanet had been noted in 1917. In collaboration with ground-based and other space-based observatories the James Webb Space Telescope (JWST) is expected to give more insight into exoplanet traits, such as their composition, environmental conditions, and potential for life. There are many methods of detecting exoplanets. Transit photometry and Doppler spectroscopy have found the most, but these methods suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone. In several cases, multiple planets have been observed around a star ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaia Catalogues
The ''Gaia'' catalogues are star catalogues created using the results obtained by ''Gaia'' space telescope. The catalogues are released in stages that will contain increasing amounts of information; the early releases also miss some stars, especially fainter stars located in dense star fields. Data from every data release can be accessed at the ''Gaia'' archive. Initial Gaia Source List The Initial Gaia Source List (IGSL) is a star catalogue of 1.2 billion objects created in support of the ''Gaia'' mission. The mission should have delivered a catalogue based entirely on its own data. For the first catalogue, Gaia DR1, a way was needed to be able to assign the observations to an object and to compare them with the objects from other star catalogues. For this purpose, a separate catalog of objects from several other catalogues was compiled, which roughly represents the state of knowledge of astronomy at the beginning of the Gaia mission. Attitude Star Catalog The Attitude Star ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Parallax
Stellar parallax is the apparent shift of position (''parallax'') of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline (the shortest side of the triangle made by a star to be observed and two positions of Earth) distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU). Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years. Thomas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Light-year
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astronomical Union (IAU), a light-year is the distance that light travels in vacuum in one Julian year (365.25 days). Despite its inclusion of the word "year", the term should not be misinterpreted as a unit of time. The ''light-year'' is most often used when expressing distances to stars and other distances on a galactic scale, especially in non-specialist contexts and popular science publications. The unit most commonly used in professional astronomy is the parsec (symbol: pc, about 3.26 light-years). Definitions As defined by the International Astronomical Union (IAU), the light-year is the product of the Julian year (365.25 days, as opposed to the 365.2425-day Gregorian year or the 365.24219-day Tropical year that both approxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all of Earth's water is contained in its global ocean, covering Water distribution on Earth, 70.8% of Earth's crust. The remaining 29.2% of Earth's crust is land, most of which is located in the form of continental landmasses within Earth's land hemisphere. Most of Earth's land is at least somewhat humid and covered by vegetation, while large Ice sheet, sheets of ice at Polar regions of Earth, Earth's polar polar desert, deserts retain more water than Earth's groundwater, lakes, rivers, and Water vapor#In Earth's atmosphere, atmospheric water combined. Earth's crust consists of slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth's outer core, Earth has a liquid outer core that generates a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friedrich Bessel
Friedrich Wilhelm Bessel (; 22 July 1784 – 17 March 1846) was a German astronomer, mathematician, physicist, and geodesy, geodesist. He was the first astronomer who determined reliable values for the distance from the Sun to another star by the method of parallax. Certain important mathematical functions were first studied systematically by Bessel and were named Bessel functions in his honour. Life and family Bessel was born in Minden, Westphalia, then capital of the Prussian administrative region Minden-Ravensberg, as second son of a civil servant into a large family. At the age of 14 he left the school, because he did not like the education in Latin language, and apprenticed in the import-export concern Kulenkamp at Bremen. The business's reliance on cargo ships led him to turn his mathematics, mathematical skills to problems in navigation. This in turn led to an interest in astronomy as a way of determining longitude. Bessel came to the attention of Heinrich Wilhelm Olber ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]