HOME





2-group
In mathematics, particularly category theory, a is a groupoid with a way to multiply objects and morphisms, making it resemble a group. They are part of a larger hierarchy of . They were introduced by Hoàng Xuân Sính in the late 1960s under the name , and they are also known as categorical groups. Definition A 2-group is a monoidal category ''G'' in which every morphism is invertible and every object has a weak inverse. (Here, a ''weak inverse'' of an object ''x'' is an object ''y'' such that ''xy'' and ''yx'' are both isomorphic to the unit object.) Strict 2-groups Much of the literature focuses on ''strict 2-groups''. A strict is a ''strict'' monoidal category in which every morphism is invertible and every object has a strict inverse (so that ''xy'' and ''yx'' are actually equal to the unit object). A strict 2-group is a group object in a category of (small) categories; as such, they could be called ''groupal categories''. Conversely, a strict is a category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-group (category Theory)
In mathematics, an ''n''-group, or ''n''-dimensional higher group, is a special kind of ''n''-category that generalises the concept of group to higher-dimensional algebra. Here, n may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of under the moniker 'gr-category'. The general definition of n-group is a matter of ongoing research. However, it is expected that every topological space will have a ''homotopy '' at every point, which will encapsulate the Postnikov tower of the space up to the homotopy group \pi_n, or the entire Postnikov tower for n=\infty. Examples Eilenberg-Maclane spaces One of the principal examples of higher groups come from the homotopy types of Eilenberg–MacLane spaces K(A,n) since they are the fundamental building blocks for constructing higher groups, and homotopy types in general. For instance, every group G can be turned into an Eilenberg-Maclane space K(G,1) through a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crossed Module
In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on H by automorphisms (which we will write on the left, (g,h) \mapsto g \cdot h , and a homomorphism of groups : d\colon H \longrightarrow G, that is equivariant with respect to the conjugation action of G on itself: : d(g \cdot h) = gd(h)g^ and also satisfies the so-called Peiffer identity: : d(h_) \cdot h_ = h_h_h_^ Origin The first mention of the second identity for a crossed module seems to be in footnote 25 on p. 422 of J. H. C. Whitehead's 1941 paper cited below, while the term 'crossed module' is introduced in his 1946 paper cited below. These ideas were well worked up in his 1949 paper 'Combinatorial homotopy II', which also introduced the important idea of a free crossed module. Whitehead's ideas on crossed modules and their applications are developed and explained in the book by Brown, Higgins, Sivera listed below. Some generalisations of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hoàng Xuân Sính
Hoàng Xuân Sính (born September 8, 1933) is a Vietnamese mathematician, a student of Grothendieck, the first female mathematics professor in Vietnam, the founder of , and a recipient of the ''Ordre des Palmes Académiques''. Early life and career Hoàng was born in Cót, in the Từ Liêm District of Vietnam, one of seven children of fabric merchant Hoàng Thuc Tan. Her mother died when she was eight years old, and she was raised by a stepmother. She has also frequently been said to be the granddaughter of Vietnamese mathematician Hoàng Xuân Hãn. She completed a bachelor's degree in 1951 in Hanoi, studying English and French, and then traveled to Paris for a second baccalaureate in mathematics. She stayed in France to study for an ''agrégation'' at the University of Toulouse, which she completed in 1959, before returning to Vietnam to become a mathematics teacher at the Hanoi National University of Education. Hoàng became the first female mathematics professor in Vietna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Object
In category theory, a branch of mathematics, group objects are certain generalizations of group (mathematics), groups that are built on more complicated structures than Set (mathematics), sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuity (topology), continuous. Definition Formally, we start with a category (mathematics), category ''C'' with finite products (i.e. ''C'' has a terminal object 1 and any two objects of ''C'' have a product (category theory), product). A group object in ''C'' is an object ''G'' of ''C'' together with morphisms *''m'' : ''G'' × ''G'' → ''G'' (thought of as the "group multiplication") *''e'' : 1 → ''G'' (thought of as the "inclusion of the identity element") *''inv'' : ''G'' → ''G'' (thought of as the "inversion operation") such that the following properties (modeled on the group axioms – more precisely, on the Universal algebra#G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Isomorphism
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D (both from C to D), then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Loop (topology)
In mathematics, a loop in a topological space is a continuous function from the unit interval to such that In other words, it is a path whose initial point is equal to its terminal point.. A loop may also be seen as a continuous map from the pointed unit circle into , because may be regarded as a quotient of under the identification of 0 with 1. The set of all loops in forms a space called the loop space of . See also * Free loop * Loop group * Loop space * Loop algebra *Fundamental group *Quasigroup In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element pro ... References Topology es:Grupo fundamental#Lazo {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second parameter of ''H'' as time then ''H'' describes a ''continu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint Equivalence
In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoint or adjunction may mean: * Adjoint of a linear map, also called its transpose in case of matrices * Hermitian adjoint (adjoint of a linear operator) in functional analysis * Adjoint endomorphism of a Lie algebra * Adjoint representation of a Lie group * Adjoint functors in category theory * Adjunction (field theory) * Adjunction formula (algebraic geometry) * Adjunction space in topology * Conjugate transpose of a matrix in linear algebra * Adjugate matrix, related to its inverse * Adjoint equation * The upper and lower adjoints of a Galois connection in order theory * The adjoint of a differential operator with general polynomial coefficients * Kleisli adjunction * Monoidal adjunction * Quillen adjunction * Axiom of adjunction In mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]