HOME
*



picture info

(2,3,7) Triangle Group
In the theory of Riemann surfaces and hyperbolic geometry, the triangle group (2,3,7) is particularly important. This importance stems from its connection to Hurwitz surfaces, namely Riemann surfaces of genus ''g'' with the largest possible order, 84(''g'' − 1), of its automorphism group. A note on terminology – the "(2,3,7) triangle group" most often refers, not to the ''full'' triangle group Δ(2,3,7) (the Coxeter group with Schwarz triangle (2,3,7) or a realization as a hyperbolic reflection group), but rather to the ''ordinary'' triangle group (the von Dyck group) ''D''(2,3,7) of orientation-preserving maps (the rotation group), which is index 2. Torsion-free normal subgroups of the (2,3,7) triangle group are Fuchsian groups associated with Hurwitz surfaces, such as the Klein quartic, Macbeath surface and First Hurwitz triplet. Constructions Hyperbolic construction To construct the triangle group, start with a hyperbolic triangle with angles π/2, π/3, and π/7. Thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surfaces
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-3 Bisected Heptagonal Tiling
In geometry, the 3-7 kisrhombille tiling is a semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4, 6, and 14 triangles meeting at each vertex. The image shows a Poincaré disk model projection of the hyperbolic plane. It is labeled V4.6.14 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 14 triangles. It is the dual tessellation of the truncated triheptagonal tiling which has one square and one heptagon and one tetrakaidecagon at each vertex. Naming The name 3-7 kisrhombille is given by Conway, seeing it as a 3-7 rhombic tiling, divided by a ''kis'' operator, adding a center point to each rhombus, and dividing into four triangles. Symmetry There are no mirror removal subgroups of ,3 The only small index subgroup is the alternation, ,3sup>+, (732). Related polyhedra and tilings Three isohedral (regular or quasiregular) tilings can be construct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hyperbolic Tilings
Hyperbolic is an adjective describing something that resembles or pertains to a hyperbola (a curve), to hyperbole (an overstatement or exaggeration), or to hyperbolic geometry. The following phenomena are described as ''hyperbolic'' because they manifest hyperbolas, not because something about them is exaggerated. * Hyperbolic angle, an unbounded variable referring to a hyperbola instead of a circle * Hyperbolic coordinates, location by geometric mean and hyperbolic angle in quadrant I *Hyperbolic distribution, a probability distribution characterized by the logarithm of the probability density function being a hyperbola * Hyperbolic equilibrium point, a fixed point that does not have any center manifolds * Hyperbolic function, an analog of an ordinary trigonometric or circular function * Hyperbolic geometric graph, a random network generated by connecting nearby points sprinkled in a hyperbolic space * Hyperbolic geometry, a non-Euclidean geometry * Hyperbolic group, a finitely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Group Theory
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such group (mathematics), groups and topology, topological and geometry, geometric properties of spaces on which these groups Group action (mathematics), act (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces). Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, which, in addition to the graph (discrete mathematics), graph structure, are endowed with the structure of a metric space, given by the so-called word metric. Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with low-dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Differential Geometry
The ''Journal of Differential Geometry'' is a peer-reviewed scientific journal of mathematics published by International Press on behalf of Lehigh University in 3 volumes of 3 issues each per year. The journal publishes an annual supplement in book form called ''Surveys in Differential Geometry''. It covers differential geometry and related subjects such as differential equations, mathematical physics, algebraic geometry, and geometric topology. The editor-in-chief is Shing-Tung Yau of Harvard University. History The journal was established in 1967 by Chuan-Chih Hsiung, who was a professor in the Department of Mathematics at Lehigh University at the time. Hsiung served as the journal's editor-in-chief, and later co-editor-in-chief, until his death in 2009. In May 1996, the annual Geometry and Topology conference which was held at Harvard University was dedicated to commemorating the 30th anniversary of the journal and the 80th birthday of its founder. Similarly, in May 20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Systolic Geometry
In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry. The notion of systole The ''systole'' of a compact metric space ''X'' is a metric invariant of ''X'', defined to be the least length of a noncontractible loop in ''X'' (i.e. a loop that cannot be contracted to a point in the ambient space ''X''). In more technical language, we minimize length over free loops representing nontrivial conjugacy classes in the fundamental group of ''X''. When ''X'' is a graph, the invariant is usually referred to as the girth, ever since the 1947 article on girth by W. T. Tutte. Possibly inspired by Tutte's article, Loewner started thinking about systolic questions on surfa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0. Complex plane Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to the set of complex numbers with positive imaginary part: :\mathcal \equiv \ ~. The term arises from a common visualization of the complex number as the point in the plane endowed with Cartesian coordinates. When the  axis is oriented vertically, the "upper half-plane" corresponds to the region above the  axis and thus complex numbers for which  > 0. It is the domain of many functions of interest in complex analysis, especially modular forms. The lower half-plane, defined by   0. Proposition: Let ''A'' and ''B'' be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes ''A'' to ''B''. :Proof: First shift the center of ''A'' to (0,0). Then take λ = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Group
In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. Definition The modular group is the group of linear fractional transformations of the upper half of the complex plane, which have the form :z\mapsto\frac, where , , , are integers, and . The group operation is function composition. This group of transformations is isomorphic to the projective special linear group , which is the quotient of the 2-dimensional special linear group over the integers by its center . In other words, consists of all matrices :\begin a & b \\ c & d \end where , , , are integers, , and pairs of matrices and are considered to be identical. The group operation is the usual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SL(2,R)
In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one: : \mbox(2,\mathbf) = \left\. It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics. SL(2, R) acts on the complex upper half-plane by fractional linear transformations. The group action factors through the quotient PSL(2, R) (the 2 × 2 projective special linear group over R). More specifically, :PSL(2, R) = SL(2, R) / , where ''I'' denotes the 2 × 2 identity matrix. It contains the modular group PSL(2, Z). Also closely related is the 2-fold covering group, Mp(2, R), a metaplectic group (thinking of SL(2, R) as a symplectic group). Another related group is SL±(2, R), the group of real 2 × 2 matrices with determinant ±1; this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphing Of Modular Tiling To 2 3 7 Triangle Tiling
Morphing is a special effect in motion pictures and animations that changes (or morphs) one image or shape into another through a seamless transition. Traditionally such a depiction would be achieved through dissolving techniques on film. Since the early 1990s, this has been replaced by computer software to create more realistic transitions. A similar method is applied to audio recordings, for example, by changing voices or vocal lines. Early transformation techniques Long before digital morphing, several techniques were used for similar image transformations. Some of those techniques are closer to a matched dissolve - a gradual change between two pictures without warping the shapes in the images - while others did change the shapes in between the start and end phases of the transformation. Tabula scalata Known since at least the end of the 16th century, Tabula scalata is a type of painting with two images divided over a corrugated surface. Each image is only correctly visib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hurwitz Quaternion Order
The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry, namely the Hurwitz surfaces. The Hurwitz quaternion order was studied in 1967 by Goro Shimura, but first explicitly described by Noam Elkies in 1998. For an alternative use of the term, see Hurwitz quaternion (both usages are current in the literature). Definition Let K be the maximal real subfield of \mathbb(\rho) where \rho is a 7th-primitive root of unity. The ring of integers of K is \mathbbeta/math>, where the element \eta=\rho+ \bar\rho can be identified with the positive real 2\cos(\tfrac). Let D be the quaternion algebra, or symbol algebra :D:=\,(\eta,\eta)_, so that i^2=j^2=\eta and ij=-ji in D. Also let \tau=1+\eta+\eta^2 and j'=\tfrac(1+\eta i + \tau j). Let :\mathcal_=\mathbbetai,j,j']. Then \mathcal_ is a maximal Order (ring theory), order o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quaternion Algebra
In mathematics, a quaternion algebra over a field ''F'' is a central simple algebra ''A'' over ''F''See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2. that has dimension 4 over ''F''. Every quaternion algebra becomes a matrix algebra by '' extending scalars'' (equivalently, tensoring with a field extension), i.e. for a suitable field extension ''K'' of ''F'', A \otimes_F K is isomorphic to the 2 × 2 matrix algebra over ''K''. The notion of a quaternion algebra can be seen as a generalization of Hamilton's quaternions to an arbitrary base field. The Hamilton quaternions are a quaternion algebra (in the above sense) over F = \mathbb, and indeed the only one over \mathbb apart from the 2 × 2 real matrix algebra, up to isomorphism. When F = \mathbb, then the biquaternions form the quaternion algebra over ''F''. Structure ''Quaternion algebra'' here means something more general than the algebra of Hamilton's quaternions. When t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]