diploid
   HOME

TheInfoList



OR:

Ploidy () is the number of complete sets of
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
s in a cell, and hence the number of possible alleles for
autosomal An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal (sex chromosome) pairs, which may have different structures. The DNA in autosomes ...
and
pseudoautosomal The pseudoautosomal regions, PAR1, PAR2, are homologous sequences of nucleotides on the X and Y chromosomes. The pseudoautosomal regions get their name because any genes within them (so far at least 29 have been found for humans) are inherited ...
genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and
individual An individual is that which exists as a distinct entity. Individuality (or self-hood) is the state or quality of being an individual; particularly (in the case of humans) of being a person unique from other people and possessing one's own need ...
organisms can be described according to the number of sets of chromosomes present (the "ploidy level"): monoploid (1 set), diploid (2 sets), triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), etc. The generic term
polyploid Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set contains ...
is often used to describe cells with three or more chromosome sets. Virtually all sexually reproducing organisms are made up of somatic cells that are diploid or greater, but ploidy level may vary widely between different organisms, between different tissues within the same organism, and at different stages in an organism's life cycle. Half of all known plant genera contain polyploid species, and about two-thirds of all grasses are polyploid. Many animals are uniformly diploid, though polyploidy is common in invertebrates, reptiles, and amphibians. In some species, ploidy varies between individuals of the same species (as in the social insects), and in others entire tissues and organ systems may be polyploid despite the rest of the body being diploid (as in the mammalian liver). For many organisms, especially plants and fungi, changes in ploidy level between generations are major drivers of speciation. In mammals and birds, ploidy changes are typically fatal. There is, however, evidence of polyploidy in organisms now considered to be diploid, suggesting that polyploidy has contributed to evolutionary diversification in plants and animals through successive rounds of polyploidization and rediploidization. Humans are diploid organisms, normally carrying two complete sets of chromosomes in their somatic cells: two copies of paternal and maternal chromosomes, respectively, in each of the 23 homologous pairs of chromosomes that humans normally have. This results in two homologous pairs within each of the 23 homologous pairs, providing a full complement of 46 chromosomes. This total number of individual chromosomes (counting all complete sets) is called the chromosome number or chromosome complement. The number of chromosomes found in a single complete set of chromosomes is called the monoploid number (''x''). The haploid number (''n'') refers to the total number of chromosomes found in a gamete (a sperm or egg cell produced by
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately re ...
in preparation for sexual reproduction). Under normal conditions, the haploid number is exactly half the total number of chromosomes present in the organism's somatic cells, with one paternal and maternal copy in each chromosome pair. For diploid organisms, the monoploid number and haploid number are equal; in humans, both are equal to 23. When a human germ cell undergoes meiosis, the diploid 46 chromosome complement is split in half to form haploid gametes. After fusion of a male and a female gamete (each containing 1 set of 23 chromosomes) during
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Pro ...
, the resulting zygote again has the full complement of 46 chromosomes: 2 sets of 23 chromosomes.
Euploidy and aneuploidy Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectivel ...
describe having a number of chromosomes that is an exact multiple of the number of chromosomes in a normal gamete; and having any other number, respectively. For example, a person with Turner syndrome may be missing one sex chromosome (X or Y), resulting in a (45,X) karyotype instead of the usual (46,XX) or (46,XY). This is a type of aneuploidy and cells from the person may be said to be aneuploid with a (diploid) chromosome complement of 45.


Etymology

The term ''ploidy'' is a
back-formation In etymology, back-formation is the process or result of creating a new word via inflection, typically by removing or substituting actual or supposed affixes from a lexical item, in a way that expands the number of lexemes associated with the c ...
from ''haploidy'' and ''diploidy''. "Ploid" is a combination of Ancient Greek -πλόος (-plóos, “-fold”) and -ειδής (-''eidḗs''), from εἶδος (''eîdos'', "form, likeness"). The principal meaning of the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. * Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancesto ...
word ᾰ̔πλόος (haplóos) is "single", from ἁ- (ha-, “one, same”). διπλόος (''diplóos'') means "duplex" or "two-fold". Diploid therefore means "duplex-shaped" (compare "humanoid", "human-shaped"). Polish botanist
Eduard Strasburger Eduard Adolf Strasburger (1 February 1844 – 18 May 1912) was a Polish-German professor and one of the most famous botanists of the 19th century. He discovered mitosis in plants. Life Eduard Strasburger was born in Warsaw, Congress Poland, the ...
coined the terms ''haploid'' and ''diploid'' in 1905. Some authors suggest that Strasburger based the terms on
August Weismann August Friedrich Leopold Weismann FRS (For), HonFRSE, LLD (17 January 18345 November 1914) was a German evolutionary biologist. Fellow German Ernst Mayr ranked him as the second most notable evolutionary theorist of the 19th century, after C ...
's conception of the id (or
germ plasm Germ plasm () is a biological concept developed in the 19th century by the German biologist August Weismann. It states that heritable information is transmitted only by germ cells in the gonads (ovaries and testes), not by somatic cells. The re ...
), hence haplo-''id'' and diplo-''id''. The two terms were brought into the English language from German through
William Henry Lang William Henry Lang FRS FRSE FLS (12 May 1874–29 August 1960) was a British botanist and served as Barker professor of cryptogamic botany at the University of Manchester. He was also a specialist in paleobotany. Life The son of Thomas Bilsl ...
's 1908 translation of a 1906 textbook by Strasburger and colleagues.


Types of ploidy


Haploid and monoploid

The term haploid is used with two distinct but related definitions. In the most generic sense, haploid refers to having the number of sets of chromosomes normally found in a gamete. Because two gametes necessarily combine during sexual reproduction to form a single zygote from which somatic cells are generated, healthy gametes always possess exactly half the number of sets of chromosomes found in the somatic cells, and therefore "haploid" in this sense refers to having exactly half the number of sets of chromosomes found in a somatic cell. By this definition, an organism whose gametic cells contain a single copy of each chromosome (one set of chromosomes) may be considered haploid while the somatic cells, containing two copies of each chromosome (two sets of chromosomes), are diploid. This scheme of diploid somatic cells and haploid gametes is widely used in the animal kingdom and is the simplest to illustrate in diagrams of genetics concepts. But this definition also allows for haploid gametes with ''more than one'' set of chromosomes. As given above, gametes are by definition haploid, regardless of the actual number of sets of chromosomes they contain. An organism whose somatic cells are tetraploid (four sets of chromosomes), for example, will produce gametes by meiosis that contain two sets of chromosomes. These gametes might still be called haploid even though they are numerically diploid. An alternative usage defines "haploid" as having a single copy of each chromosome – that is, one and only one set of chromosomes. In this case, the nucleus of a eukaryotic cell is said to be haploid only if it has a single set of
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
s, each one not being part of a pair. By extension a cell may be called haploid if its nucleus has one set of chromosomes, and an organism may be called haploid if its body cells (somatic cells) have one set of chromosomes per cell. By this definition haploid therefore would not be used to refer to the gametes produced by the tetraploid organism in the example above, since these gametes are numerically diploid. The term monoploid is often used as a less ambiguous way to describe a single set of chromosomes; by this second definition, haploid and monoploid are identical and can be used interchangeably. Gametes ( sperm and
ova , abbreviated as OVA and sometimes as OAV (original animation video), are Japanese animated films and series made specially for release in home video formats without prior showings on television or in theaters, though the first part of an OVA s ...
) are haploid cells. The haploid gametes produced by most organisms combine to form a zygote with ''n'' pairs of chromosomes, i.e. 2''n'' chromosomes in total. The chromosomes in each pair, one of which comes from the sperm and one from the egg, are said to be homologous. Cells and organisms with pairs of homologous chromosomes are called diploid. For example, most animals are diploid and produce haploid gametes. During
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately re ...
, sex cell precursors have their number of chromosomes halved by randomly "choosing" one member of each pair of chromosomes, resulting in haploid gametes. Because homologous chromosomes usually differ genetically, gametes usually differ genetically from one another. All plants and many fungi and
alga Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular micr ...
e switch between a haploid and a diploid state, with one of the stages emphasized over the other. This is called
alternation of generations Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of life cycle in plants and algae. It consists of a multicellular haploid sexual phase, the gametophyte, which has a single set of chromosomes alte ...
. Most fungi and algae are haploid during the principal stage of their life cycle, as are some primitive plants like mosses. More recently evolved plants, like the gymnosperms and angiosperms, spend the majority of their life cycle in the diploid stage. Most animals are diploid, but male
bees Bees are winged insects closely related to wasps and ants, known for their roles in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey. Bees are a monophyletic lineage within the superfam ...
,
wasps A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. T ...
, and
ants Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from vespoid wasp ancestors in the Cretaceous period. More than 13,800 of an estimated total of 22 ...
are haploid organisms because they develop from unfertilized, haploid eggs, while females (workers and queens) are diploid, making their system haplodiploid. In some cases there is evidence that the ''n'' chromosomes in a haploid set have resulted from duplications of an originally smaller set of chromosomes. This "base" number – the number of apparently originally unique chromosomes in a haploid set – is called the monoploid number, also known as basic or cardinal number, or fundamental number. As an example, the chromosomes of common wheat are believed to be derived from three different ancestral species, each of which had 7 chromosomes in its haploid gametes. The monoploid number is thus 7 and the haploid number is 3 × 7 = 21. In general ''n'' is a multiple of ''x''. The somatic cells in a wheat plant have six sets of 7 chromosomes: three sets from the egg and three sets from the sperm which fused to form the plant, giving a total of 42 chromosomes. As a formula, for wheat 2''n'' = 6''x'' = 42, so that the haploid number ''n'' is 21 and the monoploid number ''x'' is 7. The gametes of common wheat are considered to be haploid, since they contain half the genetic information of somatic cells, but they are not monoploid, as they still contain three complete sets of chromosomes (''n'' = 3''x''). In the case of wheat, the origin of its haploid number of 21 chromosomes from three sets of 7 chromosomes can be demonstrated. In many other organisms, although the number of chromosomes may have originated in this way, this is no longer clear, and the monoploid number is regarded as the same as the haploid number. Thus in humans, ''x'' = ''n'' = 23.


Diploid

Diploid cells have two homologous copies of each
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
, usually one from the
mother ] A mother is the female parent of a child. A woman may be considered a mother by virtue of having given birth, by raising a child who may or may not be her biological offspring, or by supplying her ovum for fertilisation in the case of gestati ...
and one from the
father A father is the male parent of a child. Besides the paternal bonds of a father to his children, the father may have a parental, legal, and social relationship with the child that carries with it certain rights and obligations. An adoptive fat ...
. All or nearly all mammals are diploid organisms. The suspected tetraploid (possessing four-chromosome sets) plains viscacha rat ('' Tympanoctomys barrerae'') and golden viscacha rat ('' Pipanacoctomys aureus'') have been regarded as the only known exceptions (as of 2004). However, some genetic studies have rejected any
polyploid Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set contains ...
ism in mammals as unlikely, and suggest that amplification and dispersion of repetitive sequences best explain the large genome size of these two rodents. All normal diploid individuals have some small fraction of cells that display
polyploid Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set contains ...
y.
Human Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture ...
diploid cells have 46 chromosomes (the
somatic Somatic may refer to: * Somatic (biology), referring to the cells of the body in contrast to the germ line cells ** Somatic cell, a non-gametic cell in a multicellular organism * Somatic nervous system, the portion of the vertebrate nervous syst ...
number, ''2n'') and human haploid
gametes A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
(egg and sperm) have 23 chromosomes (''n'').
Retrovirus A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase e ...
es that contain two copies of their RNA genome in each viral particle are also said to be diploid. Examples include human foamy virus,
human T-lymphotropic virus The human T-lymphotropic virus, human T-cell lymphotropic virus, or human T-cell leukemia-lymphoma virus (HTLV) family of viruses are a group of human retroviruses that are known to cause a type of cancer called adult T-cell leukemia/lymphoma a ...
, and
HIV The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immun ...
.


Polyploidy

Polyploidy is the state where all cells have multiple sets of chromosomes beyond the basic set, usually 3 or more. Specific terms are triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), octoploid (8 sets), nonaploid (9 sets), decaploid (10 sets), undecaploid (11 sets), dodecaploid (12 sets), tridecaploid (13 sets), tetradecaploid (14 sets), etc. Some higher ploidies include hexadecaploid (16 sets), dotriacontaploid (32 sets), and tetrahexacontaploid (64 sets), though Greek terminology may be set aside for readability in cases of higher ploidy (such as "16-ploid"). Polytene chromosomes of plants and fruit flies can be 1024-ploid. Ploidy of systems such as the
salivary gland The salivary glands in mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands (parotid, submandibular, and sublingual), as well as hundreds of minor salivary glands. Salivary gla ...
,
elaiosome Elaiosomes ( grc, ἔλαιον ''élaion'' "oil" + ''sóma'' "body") are fleshy structures that are attached to the seeds of many plant species. The elaiosome is rich in lipids and proteins, and may be variously shaped. Many plants have ela ...
, endosperm, and trophoblast can exceed this, up to 1048576-ploid in the silk glands of the commercial silkworm ''
Bombyx mori The domestic silk moth (''Bombyx mori''), is an insect from the moth family Bombycidae. It is the closest relative of ''Bombyx mandarina'', the wild silk moth. The silkworm is the larva or caterpillar of a silk moth. It is an economically i ...
''. The chromosome sets may be from the same species or from closely related species. In the latter case, these are known as allopolyploids (or amphidiploids, which are allopolyploids that behave as if they were normal diploids). Allopolyploids are formed from the hybridization of two separate species. In plants, this probably most often occurs from the pairing of meiotically unreduced
gametes A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
, and not by diploid–diploid hybridization followed by chromosome doubling. The so-called ''Brassica'' triangle is an example of allopolyploidy, where three different parent species have hybridized in all possible pair combinations to produce three new species. Polyploidy occurs commonly in plants, but rarely in animals. Even in diploid organisms, many somatic cells are polyploid due to a process called endoreduplication, where duplication of the genome occurs without mitosis (cell division). The extreme in polyploidy occurs in the
fern A fern (Polypodiopsida or Polypodiophyta ) is a member of a group of vascular plants (plants with xylem and phloem) that reproduce via spores and have neither seeds nor flowers. The polypodiophytes include all living pteridophytes excep ...
genus ''
Ophioglossum ''Ophioglossum'', the adder's-tongue ferns, is a genus of about 50 species of ferns in the family Ophioglossaceae. The name ''Ophioglossum'' comes from the Greek meaning "snake-tongue".
'', the adder's-tongues, in which polyploidy results in chromosome counts in the hundreds, or, in at least one case, well over one thousand. It is possible for polyploid organisms to revert to lower ploidy by haploidisation.


In bacteria and archaea

Polyploid Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set contains ...
y is a characteristic of the bacterium '' Deinococcus radiodurans'' and of the archaeon '' Halobacterium salinarum''. These two species are highly resistant to
ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
and
desiccation Desiccation () is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic (attracts and holds water) substance that induces or sustains such a state in its local vicinity in a moderately sealed container. ...
, conditions that induce DNA double-strand breaks. This resistance appears to be due to efficient
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may be ...
al repair.


Variable or indefinite ploidy

Depending on growth conditions, prokaryotes such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were amo ...
may have a chromosome copy number of 1 to 4, and that number is commonly fractional, counting portions of the chromosome partly replicated at a given time. This is because under exponential growth conditions the cells are able to replicate their DNA faster than they can divide. In ciliates, the macronucleus is called ampliploid, because only part of the genome is amplified.


Mixoploidy

Mixoploidy is the case where two cell lines, one diploid and one polyploid, coexist within the same organism. Though polyploidy in humans is not viable, mixoploidy has been found in live adults and children. There are two types: diploid-triploid mixoploidy, in which some cells have 46 chromosomes and some have 69, and diploid-tetraploid mixoploidy, in which some cells have 46 and some have 92 chromosomes. It is a major topic of cytology.


Dihaploidy and polyhaploidy

Dihaploid and polyhaploid cells are formed by haploidisation of polyploids, i.e., by halving the chromosome constitution. Dihaploids (which are diploid) are important for selective breeding of tetraploid crop plants (notably potatoes), because selection is faster with diploids than with tetraploids. Tetraploids can be reconstituted from the diploids, for example by somatic fusion. The term "dihaploid" was coined by Bender to combine in one word the number of genome copies (diploid) and their origin (haploid). The term is well established in this original sense, but it has also been used for doubled monoploids or doubled haploids, which are homozygous and used for genetic research.


Euploidy and aneuploidy

Euploidy (
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. * Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancesto ...
''eu'', "true" or "even") is the state of a cell or organism having one or more than one set of the same set of chromosomes, possibly excluding the sex-determining chromosomes. For example, most human cells have 2 of each of the 23 homologous monoploid chromosomes, for a total of 46 chromosomes. A human cell with one extra set of the 23 normal chromosomes (functionally triploid) would be considered euploid. Euploid
karyotype A karyotype is the general appearance of the complete set of metaphase chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is disc ...
s would consequentially be a multiple of the haploid number, which in humans is 23. Aneuploidy is the state where one or more individual chromosomes of a normal set are absent or present in more than their usual number of copies (excluding the absence or presence of complete sets, which is considered euploidy). Unlike euploidy, aneuploid karyotypes will not be a multiple of the haploid number. In humans, examples of aneuploidy include having a single extra chromosome (as in
Down syndrome Down syndrome or Down's syndrome, also known as trisomy 21, is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is usually associated with physical growth delays, mild to moderate intellectual dis ...
, where affected individuals have three copies of chromosome 21) or missing a chromosome (as in Turner syndrome, where affected individuals have only one sex chromosome). Aneuploid
karyotype A karyotype is the general appearance of the complete set of metaphase chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is disc ...
s are given names with the suffix ''-somy'' (rather than ''-ploidy'', used for euploid karyotypes), such as trisomy and
monosomy Monosomy is a form of aneuploidy with the presence of only one chromosome from a pair. Partial monosomy occurs when a portion of one chromosome in a pair is missing. Human monosomy Human conditions due to monosomy: * Turner syndrome – People wit ...
.


Homoploid

Homoploid means "at the same ploidy level", i.e. having the same number of homologous chromosomes. For example, homoploid hybridization is hybridization where the offspring have the same ploidy level as the two parental species. This contrasts with a common situation in plants where chromosome doubling accompanies or occurs soon after hybridization. Similarly, homoploid speciation contrasts with polyploid speciation.


Zygoidy and azygoidy

Zygoidy is the state in which the chromosomes are paired and can undergo meiosis. The zygoid state of a species may be diploid or polyploid. In the azygoid state the chromosomes are unpaired. It may be the natural state of some asexual species or may occur after meiosis. In diploid organisms the azygoid state is monoploid. (See below for dihaploidy.)


Special cases


More than one nucleus per cell

In the strictest sense, ploidy refers to the number of sets of chromosomes in a single nucleus rather than in the cell as a whole. Because in most situations there is only one nucleus per cell, it is commonplace to speak of the ploidy of a cell, but in cases in which there is more than one nucleus per cell, more specific definitions are required when ploidy is discussed. Authors may at times report the total combined ploidy of all nuclei present within the cell membrane of a syncytium,Encyclopedia of the Life Sciences (2002) "Polyploidy" Francesco D'Amato and Mauro Durante though usually the ploidy of each nucleus is described individually. For example, a fungal dikaryon with two separate haploid nuclei is distinguished from a diploid cell in which the chromosomes share a nucleus and can be shuffled together.


Ancestral ploidy levels

It is possible on rare occasions for ploidy to increase in the germline, which can result in
polyploid Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set contains ...
offspring and ultimately polyploid species. This is an important evolutionary mechanism in both plants and animals and is known as a primary driver of speciation. As a result, it may become desirable to distinguish between the ploidy of a species or variety as it presently breeds and that of an ancestor. The number of chromosomes in the ancestral (non-homologous) set is called the monoploid number (''x''), and is distinct from the haploid number (''n'') in the organism as it now reproduces. Common wheat (''Triticum aestivum'') is an organism in which ''x'' and ''n'' differ. Each plant has a total of six sets of chromosomes (with two sets likely having been obtained from each of three different diploid species that are its distant ancestors). The somatic cells are hexaploid, 2''n'' = 6''x'' = 42 (where the monoploid number ''x'' = 7 and the haploid number ''n'' = 21). The gametes are haploid for their own species, but triploid, with three sets of chromosomes, by comparison to a probable evolutionary ancestor, einkorn wheat.
Tetraploidy Polyploidy is a condition in which the cells of an organism have more than one pair of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes, where each set contains ...
(four sets of chromosomes, 2''n'' = 4''x'') is common in many plant species, and also occurs in amphibians, reptiles, and
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (head, thorax and abdomen), three pairs of j ...
s. For example, species of '' Xenopus'' (African toads) form a ploidy series, featuring diploid ('' X. tropicalis'', 2n=20), tetraploid ('' X. laevis'', 4n=36), octaploid ('' X. wittei'', 8n=72), and dodecaploid ('' X. ruwenzoriensis'', 12n=108) species. Over evolutionary time scales in which chromosomal polymorphisms accumulate, these changes become less apparent by
karyotype A karyotype is the general appearance of the complete set of metaphase chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is disc ...
– for example, humans are generally regarded as diploid, but the 2R hypothesis has confirmed two rounds of whole genome duplication in early vertebrate ancestors.


Haplodiploidy

Ploidy can also vary between individuals of the same species or at different stages of the life cycle. In some insects it differs by caste. In humans, only the gametes are haploid, but in many of the social insects, including
ant Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from vespoid wasp ancestors in the Cretaceous period. More than 13,800 of an estimated total of 22, ...
s,
bee Bees are winged insects closely related to wasps and ants, known for their roles in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey. Bees are a monophyletic lineage within the superf ...
s, and termites, males develop from unfertilized eggs, making them haploid for their entire lives, even as adults. In the Australian bulldog ant, '' Myrmecia pilosula'', a haplodiploid species, haploid individuals of this species have a single chromosome and diploid individuals have two chromosomes. In ''
Entamoeba ''Entamoeba'' is a genus of Amoebozoa found as internal parasites or commensals of animals. In 1875, Fedor Lösch described the first proven case of amoebic dysentery in St. Petersburg, Russia. He referred to the amoeba he observed microscop ...
'', the ploidy level varies from 4''n'' to 40''n'' in a single population.
Alternation of generations Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of life cycle in plants and algae. It consists of a multicellular haploid sexual phase, the gametophyte, which has a single set of chromosomes alte ...
occurs in most plants, with individuals "alternating" ploidy level between different stages of their sexual life cycle.


Tissue-specific polyploidy

In large multicellular organisms, variations in ploidy level between different tissues, organs, or cell lineages are common. Because the chromosome number is generally reduced only by the specialized process of meiosis, the somatic cells of the body inherit and maintain the chromosome number of the zygote by mitosis. However, in many situations somatic cells double their copy number by means of endoreduplication as an aspect of cellular differentiation. For example, the hearts of two-year-old human children contain 85% diploid and 15% tetraploid nuclei, but by 12 years of age the proportions become approximately equal, and adults examined contained 27% diploid, 71% tetraploid and 2% octaploid nuclei.


Adaptive and ecological significance of variation in ploidy

There is continued study and debate regarding the fitness advantages or disadvantages conferred by different ploidy levels. A study comparing the karyotypes of endangered or invasive plants with those of their relatives found that being polyploid as opposed to diploid is associated with a 14% lower risk of being endangered, and a 20% greater chance of being invasive. Polyploidy may be associated with increased vigor and adaptability. Some studies suggest that selection is more likely to favor diploidy in host species and haploidy in parasite species. When a germ cell with an uneven number of chromosomes undergoes meiosis, the chromosomes cannot be evenly divided between the daughter cells, resulting in aneuploid gametes. Triploid organisms, for instance, are usually sterile. Because of this, triploidy is commonly exploited in agriculture to produce seedless fruit such as bananas and watermelons. If the fertilization of human gametes results in three sets of chromosomes, the condition is called triploid syndrome. In unicellular organisms the ploidy nutrient limitation hypothesis suggests that nutrient limitation should encourage haploidy in preference to higher ploidies. This hypothesis is due to the higher surface-to-volume ratio of haploids, which eases nutrient uptake, thereby increasing the internal nutrient-to-demand ratio. Mable 2001 finds ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have bee ...
'' to be somewhat inconsistent with this hypothesis however, as haploid growth is faster than diploid under high nutrient conditions. The NLH is also tested in haploid, diploid, and polyploid fungi by Gerstein et al 2017. This result is also more complex: On the one hand, under phosphorus and other nutrient limitation, lower ploidy is selected as expected. However under normal nutrient levels or under limitation of only nitrogen, higher ploidy was selected. Thus the NLH and more generally, the idea that haploidy is selected by harsher conditions is cast into doubt by these results. Older WGDs have also been investigated. Only as recently as 2015 was the ancient whole genome duplication in Baker's yeast proven to be allopolyploid, by Marcet-Houben and Gabaldón 2015. It still remains to be explained why there are not more polyploid events in fungi, and the place of neopolyploidy and mesopolyploidy in fungal history.


Glossary of ploidy numbers

The common potato (''Solanum tuberosum'') is an example of a tetraploid organism, carrying four sets of chromosomes. During sexual reproduction, each potato plant inherits two sets of 12 chromosomes from the pollen parent, and two sets of 12 chromosomes from the ovule parent. The four sets combined provide a full complement of 48 chromosomes. The haploid number (half of 48) is 24. The monoploid number equals the total chromosome number divided by the ploidy level of the somatic cells: 48 chromosomes in total divided by a ploidy level of 4 equals a monoploid number of 12. Hence, the monoploid number (12) and haploid number (24) are distinct in this example. However, commercial potato crops (as well as many other crop plants) are commonly propagated vegetatively (by asexual reproduction through mitosis), in which case new individuals are produced from a single parent, without the involvement of gametes and fertilization, and all the offspring are genetically identical to each other and to the parent, including in chromosome number. The parents of these vegetative clones may still be capable of producing haploid gametes in preparation for sexual reproduction, but these gametes are not used to create the vegetative offspring by this route.


Specific examples


Notes


References


Sources

* Griffiths, A. J. ''et al.'' 2000. ''An introduction to genetic analysis'', 7th ed. W. H. Freeman, New York


External links

Some eukaryotic genome-scale or genome size databases and other sources which may list the ploidy levels of many organisms:
Animal genome size database



Fungal genome size database


of Ensembl Genomes *
Supporting Data Set
with information on ploidy level and number of chromosomes of several protists)
Chromosome number and ploidy mutations
YouTube tutorial video {{chromo Classical genetics Cytogenetics Genetics concepts