Wigner effect
   HOME

TheInfoList



OR:

The Wigner effect (named for its discoverer,
Eugene Wigner Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his co ...
), also known as the discomposition effect or Wigner's disease, is the displacement of
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
s in a solid caused by
neutron radiation Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new isotopes— ...
. Any solid can display the Wigner effect. The effect is of most concern in neutron moderators, such as
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
, intended to reduce the speed of
fast neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
, thereby turning them into
thermal neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
capable of sustaining a nuclear chain reaction involving
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
.


Explanation

To create the Wigner effect,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s that collide with the atoms in a
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns ...
must have enough
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
to displace them from the lattice. This amount (
threshold displacement energy In materials science, the threshold displacement energy () is the minimum kinetic energy that an atom in a solid needs to be permanently displaced from its site in the lattice to a defect position. It is also known as "displacement threshold en ...
) is approximately 25 eV. A neutron's energy can vary widely, but it is not uncommon to have energies up to and exceeding 10 MeV (10,000,000 eV) in the centre of a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
. A neutron with a significant amount of energy will create a displacement cascade in a matrix via
elastic collision In physics, an elastic collision is an encounter ( collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into ...
s. For example, a 1 MeV neutron striking
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
will create 900 displacements; not all displacements will create defects, because some of the struck atoms will find and fill the vacancies that were either small pre-existing voids or vacancies newly formed by the other struck atoms. The atoms that do not find a vacancy come to rest in non-ideal locations; that is, not along the symmetrical lines of the lattice. These atoms are referred to as interstitial atoms, or simply interstitials. An interstitial atom and its associated vacancy are known as a Frenkel defect. Because these atoms are not in the ideal location, they have an energy associated with them, much as a ball at the top of a hill has
gravitational potential energy Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (conver ...
. This energy is referred to as ''Wigner energy''. When a large number of interstitials have accumulated, they pose a risk of releasing all of their energy suddenly, creating a rapid, very great increase in temperature. Sudden, unplanned increases in temperature can present a large risk for certain types of nuclear reactors with low operating temperatures. One such release was the indirect cause of the
Windscale fire The Windscale fire of 10 October 1957 was the worst nuclear accident in the United Kingdom's history, and one of the worst in the world, ranked in severity at level 5 out of a possible 7 on the International Nuclear Event Scale. The fire was in ...
. Accumulation of energy in irradiated graphite has been recorded as high as 2.7 kJ/g, but is typically much lower than this. Despite some reports, Wigner energy buildup had nothing to do with the cause of the Chernobyl disaster: this reactor, like all contemporary power reactors, operated at a high enough temperature to allow the displaced graphite structure to realign itself before any potential energy could be stored. Wigner energy may have played some part following the
prompt critical In nuclear engineering, prompt criticality describes a nuclear fission event in which criticality (the threshold for an exponentially growing nuclear fission chain reaction) is achieved with prompt neutrons alone (neutrons that are released immed ...
neutron spike, when the accident entered the graphite fire phase of events.


Dissipation of Wigner energy

A buildup of Wigner energy can be relieved by heating the material. This process is known as annealing. In graphite this occurs at .


Intimate Frenkel pairs

In 2003, it was postulated that Wigner energy can be stored by the formation of metastable defect structures in graphite. Notably, the large energy release observed at 200–250 ° C has been described in terms of a metastable interstitial-vacancy pair. The interstitial atom becomes trapped on the lip of the vacancy, and there is a barrier for it to recombine to give perfect graphite.


Citations


General references

* Glasstone, Samuel, and Alexander Sesonske
963 Year 963 ( CMLXIII) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. Events By place Byzantine Empire * March 15 – Emperor Romanos II dies at age 25, probably of poison admini ...
(1994). ''Nuclear Reactor Engineering''. Boston: Springer. . {{OCLC, 852791143. Condensed matter physics Crystallographic defects Nuclear technology Physical phenomena Radiation effects