Waveguide (electromagnetism)
   HOME

TheInfoList



OR:

In
radio-frequency engineering Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or use sign ...
and communications engineering, waveguide is a hollow metal pipe used to carry
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s. This type of waveguide is used as a
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmi ...
mostly at
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
frequencies, for such purposes as connecting microwave
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
s and receivers to their
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
s, in equipment such as
microwave oven A microwave oven (commonly referred to as a microwave) is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce ...
s,
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
sets, satellite communications, and microwave radio links. The electromagnetic waves in a (metal-pipe) waveguide may be imagined as travelling down the guide in a zig-zag path, being repeatedly reflected between opposite walls of the guide. For the particular case of rectangular waveguide, it is possible to base an exact analysis on this view. Propagation in a dielectric waveguide may be viewed in the same way, with the waves confined to the dielectric by
total internal reflection Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflect ...
at its surface. Some structures, such as non-radiative dielectric waveguides and the Goubau line, use both metal walls and dielectric surfaces to confine the wave.


Principle

Depending on the frequency, waveguides can be constructed from either conductive or
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
materials. Generally, the lower the frequency to be passed the larger the waveguide is. For example, the natural waveguide the earth forms given by the dimensions between the conductive ionosphere and the ground as well as the circumference at the median altitude of the Earth is resonant at 7.83 Hz. This is known as Schumann resonance. On the other hand, waveguides used in extremely high frequency (EHF) communications can be less than a millimeter in width.


History

During the 1890s theorists did the first analyses of electromagnetic waves in ducts. Around 1893 J. J. Thomson derived the electromagnetic modes inside a cylindrical metal cavity. In 1897
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. A ...
did a definitive analysis of waveguides; he solved the boundary value problem of electromagnetic waves propagating through both conducting tubes and dielectric rods of arbitrary shape. He showed that the waves could travel without attenuation only in specific normal modes with either the
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
( TE modes) or
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
( TM modes), perpendicular to the direction of propagation. He also showed each mode had a cutoff frequency below which waves would not propagate. Since the cutoff wavelength for a given tube was of the same order as its width, it was clear that a hollow conducting tube could not carry radio wavelengths much larger than its diameter. In 1902 R. H. Weber observed that electromagnetic waves travel at a slower speed in tubes than in free space, and deduced the reason; that the waves travel in a "zigzag" path as they reflect from the walls. Prior to the 1920s, practical work on radio waves concentrated on the low frequency end of the radio spectrum, as these frequencies were better for long-range communication. These were far below the frequencies that could propagate in even large waveguides, so there was little experimental work on waveguides during this period, although a few experiments were done. In a June 1, 1894 lecture, "The work of Hertz", before the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
, Oliver Lodge demonstrated the transmission of 3 inch radio waves from a
spark gap A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductor ...
through a short cylindrical copper duct. In his pioneering 1894-1900 research on microwaves,
Jagadish Chandra Bose Sir Jagadish Chandra Bose (;, ; 30 November 1858 – 23 November 1937) was a biologist, physicist, botanist and an early writer of science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contribution ...
used short lengths of pipe to conduct the waves, so some sources credit him with inventing the waveguide. However, after this, the concept of radio waves being carried by a tube or duct passed out of engineering knowledge. During the 1920s the first continuous sources of high frequency radio waves were developed: the
Barkhausen–Kurz tube The Barkhausen–Kurz tube, also called the retarding-field tube, reflex triode, B–K oscillator, and Barkhausen oscillator was a high frequency vacuum tube electronic oscillator invented in 1920 by German physicists Heinrich Georg Barkhau ...
, the first oscillator which could produce power at
UHF Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter (on ...
frequencies; and the split-anode magnetron which by the 1930s had generated radio waves at up to 10 GHz. These made possible the first systematic research on microwaves in the 1930s. It was discovered that
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmi ...
s used to carry lower frequency radio waves,
parallel line In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or interse ...
and
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
, had excessive power losses at microwave frequencies, creating a need for a new transmission method. The waveguide was developed independently between 1932 and 1936 by George C. Southworth at Bell Telephone Laboratories and Wilmer L. Barrow at the
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of th ...
, who worked without knowledge of one another. Southworth's interest was sparked during his 1920s doctoral work in which he measured the
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
of water with a radio frequency
Lecher line In electronics, a Lecher line or Lecher wires is a pair of parallel wires or rods that were used to measure the wavelength of radio waves, mainly at VHF, UHF and microwave frequencies. They form a short length of balanced transmission line (a ...
in a long tank of water. He found that if he removed the Lecher line, the tank of water still showed resonance peaks, indicating it was acting as a dielectric waveguide. At Bell Labs in 1931 he resumed work in dielectric waveguides. By March 1932 he observed waves in water-filled copper pipes. Rayleigh's previous work had been forgotten, and
Sergei A. Schelkunoff Sergei Alexander Schelkunoff (russian: Сергей Александрович Щелкунов; January 27, 1897 – May 2, 1992), who published as S. A. Schelkunoff, was a distinguished mathematician, engineer and electromagnetism theorist who ...
, a Bell Labs mathematician, did theoretical analyses of waveguides and rediscovered waveguide modes. In December 1933 it was realized that with a metal sheath the dielectric is superfluous and attention shifted to metal waveguides. Barrow had become interested in high frequencies in 1930 studying under
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld, (; 5 December 1868 – 26 April 1951) was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored many students for the new era of theoretic ...
in Germany. At MIT beginning in 1932 he worked on high frequency antennas to generate narrow beams of radio waves to locate aircraft in fog. He invented a
horn antenna A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are ...
and hit on the idea of using a hollow pipe as a feedline to feed radio waves to the antenna. By March 1936 he had derived the propagation modes and cutoff frequency in a rectangular waveguide. The source he was using had a large wavelength of 40 cm, so for his first successful waveguide experiments he used a 16-foot section of air duct, 18 inches in diameter. Barrow and Southworth became aware of each other's work a few weeks before both were scheduled to present papers on waveguides to a combined meeting of the
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of k ...
and the Institute of Radio Engineers in May 1936. They amicably worked out credit sharing and patent division arrangements. The development of centimeter
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
during World War 2 and the first high power microwave tubes, the klystron (1938) and cavity magnetron (1940), resulted in the first widespread use of waveguide. Standard waveguide "plumbing" components were manufactured, with flanges on the end which could be bolted together. After the war in the 1950s and 60s waveguides became common in commercial microwave systems, such as airport radar and microwave relay networks which were built to transmit telephone calls and television programs between cities.


Description

In the
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
region of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
, a waveguide normally consists of a hollow metallic conductor. These waveguides can take the form of single conductors with or without a dielectric coating, e.g. the Goubau line and helical waveguides. Hollow waveguides must be one-half wavelength or more in diameter in order to support one or more transverse wave modes. Waveguides may be filled with pressurized gas to inhibit arcing and prevent multipaction, allowing higher power transmission. Conversely, waveguides may be required to be evacuated as part of evacuated systems (e.g. electron beam systems). A slotted waveguide is generally used for
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
and other similar applications. The waveguide serves as a feed path, and each slot is a separate radiator, thus forming an antenna. This structure has the capability of generating a radiation pattern to launch an
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
in a specific relatively narrow and controllable direction. A closed waveguide is an electromagnetic waveguide (a) that is tubular, usually with a circular or rectangular cross section, (b) that has electrically conducting walls, (c) that may be hollow or filled with a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
material, (d) that can support a large number of discrete propagating modes, though only a few may be practical, (e) in which each discrete mode defines the propagation constant for that mode, (f) in which the field at any point is describable in terms of the supported modes, (g) in which there is no
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
field, and (h) in which discontinuities and bends may cause mode conversion but not radiation. The dimensions of a hollow metallic waveguide determine which wavelengths it can support, and in which modes. Typically the waveguide is operated so that only a single mode is present. The lowest order mode possible is generally selected. Frequencies below the guide's cutoff frequency will not propagate. It is possible to operate waveguides at higher order modes, or with multiple modes present, but this is usually impractical. Waveguides are almost exclusively made of metal and mostly rigid structures. There are certain types of "corrugated" waveguides that have the ability to flex and bend but only used where essential since they degrade propagation properties. Due to propagation of energy in mostly air or space within the waveguide, it is one of the lowest loss transmission line types and highly preferred for high frequency applications where most other types of transmission structures introduce large losses. Due to the
skin effect Skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the co ...
at high frequencies, electric current along the walls penetrates typically only a few micrometers into the metal of the inner surface. Since this is where most of the resistive loss occurs, it is important that the conductivity of interior surface be kept as high as possible. For this reason, most waveguide interior surfaces are plated with
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
,
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
, or
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
. Voltage standing wave ratio ( VSWR) measurements may be taken to ensure that a waveguide is contiguous and has no leaks or sharp bends. If such bends or holes in the waveguide surface are present, this may diminish the performance of both transmitter and receiver equipment connected at either end. Poor transmission through the waveguide may also occur as a result of moisture build up which corrodes and degrades conductivity of the inner surfaces, which is crucial for low loss propagation. For this reason, waveguides are nominally fitted with microwave windows at the outer end that will not interfere with propagation but keep the elements out. Moisture can also cause
fungus A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
build up or arcing in high power systems such as radio or radar transmitters. Moisture in waveguides can typically be prevented with silica gel, a desiccant, or slight pressurization of the waveguide cavities with dry
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
or
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice a ...
. Desiccant silica gel canisters may be attached with screw-on nibs and higher power systems will have pressurized tanks for maintaining pressure including leakage monitors. Arcing may also occur if there is a hole, tear or bump in the conducting walls, if transmitting at high power (usually 200 watts or more). Waveguide plumbing is crucial for proper waveguide performance. Voltage standing waves occur when impedance mismatches in the waveguide cause energy to reflect back in the opposite direction of propagation. In addition to limiting the effective transfer of energy, these reflections can cause higher voltages in the waveguide and damage equipment.


Waveguides in practice

In practice, waveguides act as the equivalent of cables for super high frequency (SHF) systems. For such applications, it is desired to operate waveguides with only one mode propagating through the waveguide. With rectangular waveguides, it is possible to design the waveguide such that the frequency band over which only one mode propagates is as high as 2:1 (i.e. the ratio of the upper band edge to lower band edge is two). The relation between the waveguide dimensions and the lowest frequency is simple: if \scriptstyle W is the greater of its two dimensions, then the longest wavelength that will propagate is \lambda\;=\;2W and the lowest frequency is thus f\;=\; c/\lambda\;=\;c/2W With circular waveguides, the highest possible bandwidth allowing only a single mode to propagate is only 1.3601:1. Because rectangular waveguides have a much larger bandwidth over which only a single mode can propagate, standards exist for rectangular waveguides, but not for circular waveguides. In general (but not always), standard waveguides are designed such that * one band starts where another band ends, with another band that overlaps the two bands * the lower edge of the band is approximately 30% higher than the waveguide's cutoff frequency * the upper edge of the band is approximately 5% lower than the cutoff frequency of the next higher order mode * the waveguide height is half the waveguide width The first condition is to allow for applications near band edges. The second condition limits
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
, a phenomenon in which the velocity of propagation is a function of frequency. It also limits the loss per unit length. The third condition is to avoid evanescent-wave coupling via higher order modes. The fourth condition is that which allows a 2:1 operation bandwidth. Although it is possible to have a 2:1 operating bandwidth when the height is less than half the width, having the height exactly half the width maximizes the power that can propagate inside the waveguide before dielectric breakdown occurs. Below is a table of standard waveguides. The waveguide name ''WR'' stands for ''waveguide rectangular'', and the number is the inner dimension width of the waveguide in hundredths of an
inch Measuring tape with inches The inch (symbol: in or ″) is a unit of length in the British imperial and the United States customary systems of measurement. It is equal to yard or of a foot. Derived from the Roman uncia ("twelfth ...
(0.01 inch = 0.254 mm) rounded to the nearest hundredth of an inch. :* Radio Components Standardization Committee : For historical reasons the outside rather than the inside dimensions of these waveguides are 2:1 (with wall thickness WG6–WG10: 0.08" (2.0 mm), WG11A–WG15: 0.064" (1.6 mm), WG16–WG17: 0.05" (1.3 mm), WG18–WG28: 0.04" (1.0 mm)) For the frequencies in the table above, the main advantage of waveguides over
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
s is that waveguides support propagation with lower loss. For lower frequencies, the waveguide dimensions become impractically large, and for higher frequencies the dimensions become impractically small (the manufacturing tolerance becomes a significant portion of the waveguide size).


Mathematical analysis

Electromagnetic waveguides are analyzed by solving
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
, or their reduced form, the
electromagnetic wave equation The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous fo ...
, with boundary conditions determined by the properties of the materials and their interfaces. These equations have multiple solutions, or modes, which are eigenfunctions of the equation system. Each mode is characterized by a cutoff frequency below which the mode cannot exist in the guide. Waveguide propagation modes depend on the operating
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
and polarization and the shape and size of the guide. The longitudinal mode of a waveguide is a particular
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
pattern formed by waves confined in the cavity. The transverse modes are classified into different types: * TE modes (transverse electric) have no electric field in the direction of propagation. * TM modes (transverse magnetic) have no magnetic field in the direction of propagation. * TEM modes (transverse electromagnetic) have no electric nor magnetic field in the direction of propagation. * Hybrid modes have both electric and magnetic field components in the direction of propagation. Waveguides with certain symmetries may be solved using the method of
separation of variables In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs ...
. Rectangular wave guides may be solved in rectangular coordinates. Round waveguides may be solved in cylindrical coordinates. In hollow, single conductor waveguides, TEM waves are not possible. This contrasts with two-conductor
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmi ...
s used at lower frequencies;
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
, parallel wire line and
stripline Stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line. Description A stri ...
, in which TEM mode is possible. Additionally, the propagating modes (i.e. TE and TM) inside the waveguide can be mathematically expressed as the superposition of two TEM waves. The mode with the lowest cutoff frequency is termed the dominant mode of the guide. It is common to choose the size of the guide such that only this one mode can exist in the frequency band of operation. In rectangular and circular (hollow pipe) waveguides, the dominant modes are designated the TE1,0 mode and TE1,1 modes respectively. Image:TE11.svg, TE1,1 mode of a circular hollow metallic waveguide.


Dielectric waveguides

A ''dielectric waveguide'' employs a solid
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
rod rather than a hollow pipe. An
optical fibre An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
is a dielectric guide designed to work at optical frequencies. Transmission lines such as
microstrip Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as the substrate. Microstrip lines are used to convey microwave-freque ...
, coplanar waveguide,
stripline Stripline is a transverse electromagnetic (TEM) transmission line medium invented by Robert M. Barrett of the Air Force Cambridge Research Centre in the 1950s. Stripline is the earliest form of planar transmission line. Description A stri ...
or
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
may also be considered to be waveguides. Dielectric rod and slab waveguides are used to conduct radio waves, mostly at millimeter wave frequencies and above. These confine the radio waves by
total internal reflection Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflect ...
from the step in
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
due to the change in
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
at the material surface. At millimeter wave frequencies and above, metal is not a good conductor, so metal waveguides can have increasing attenuation. At these wavelengths dielectric waveguides can have lower losses than metal waveguides.
Optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
is a form of dielectric waveguide used at optical wavelengths. One difference between dielectric and metal waveguides is that at a metal surface the electromagnetic waves are tightly confined; at high frequencies the electric and magnetic fields penetrate a very short distance into the metal. In contrast, the surface of the dielectric waveguide is an interface between two dielectrics, so the fields of the wave penetrate outside the dielectric in the form of an
evanescent Evanescent may refer to: * Evanescent (dermatology) Evanescent skin lesions, like wheals, are those that last for less than 24 hours before resolving.James, William; Berger, Timothy; Elston, Dirk (2005). ''Andrews' Diseases of the Skin: Clinical ...
(non-propagating) wave.


See also

* Waveguide filter *
Angular misalignment loss In waveguide design and construction, angular misalignment loss is power (physics), power loss caused by the deviation from optimum angular alignment of the axes of source-to-waveguide, waveguide-to-waveguide, or waveguide-to-detector. The waveguide ...
* Cavity resonator * Cutoff frequency *
Dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
*
Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
*
Feed horn A feed horn (or feedhorn) is a small horn antenna used to couple a waveguide to e.g. a parabolic dish antenna or offset dish antenna for reception or transmission of microwave. A typical application is the use for satellite television ...
* Filled cable *
Horn antenna A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are ...
*
Leaky mode Leakey may refer to: *Leakey, Texas, U.S., a city * Leakey (crater), a lunar impact crater *Leakey (surname) *7958 Leakey, an asteroid *Leakey Independent School District The Leakey Independent School District is a public school district based in ...
* Substrate-integrated waveguide * Klystron * Magic tee * Optical waveguide * Radiation mode *
Radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
*
Radio propagation Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affect ...
*
Transmission medium A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulat ...
* Cantenna * Waveguide rotary joint


References

''This article is based in part on material from Federal Standard 1037C and from MIL-STD-188, and ATIS'' * J. J. Thomson, ''Recent Researches'' (1893). * O. J. Lodge, ''Proc. Roy. Inst.'' 14, p. 321 (1894). * Lord Rayleigh, ''Phil. Mag.'' 43, p. 125 (1897). * N. W. McLachlan, ''Theory and Applications of Mathieu Functions'', p. 8 (1947) (reprinted by Dover: New York, 1964).


Further reading

*
George Clark Southworth George Clark Southworth (August 24, 1890 – July 6, 1972), who published as G. C. Southworth, was a prominent American radio engineer best known for his role in the development of waveguides in the early 1930s. Biography Southworth was born in ...
, "''Principles and applications of wave-guide transmission''". New York, Van Nostrand 950 xi, 689 p. illus. 24 cm. Bell Telephone Laboratories series. LCCN 50009834


External links


Derivation of Fields Within a Rectangular Waveguide
antenna-theory.com {{DEFAULTSORT:Waveguide (Electromagnetism) Telecommunications engineering Electrodynamics Microwave technology Wave mechanics