WRKY protein domain
   HOME

TheInfoList



OR:

The WRKY domain is found in the WRKY transcription factor family, a class of transcription factors. The WRKY domain is found almost exclusively in plants although WRKY genes appear present in some diplomonads, social amoebae and other amoebozoa, and fungi
incertae sedis ' () or ''problematica'' is a term used for a taxonomic group where its broader relationships are unknown or undefined. Alternatively, such groups are frequently referred to as "enigmatic taxa". In the system of open nomenclature, uncertain ...
. They appear absent in other non-plant species. WRKY transcription factors have been a significant area of plant research for the past 20 years. The WRKY DNA-binding domain recognizes the W-box (T)TGAC(C/T) (and variants of this sequence)
cis-regulatory element ''Cis''-regulatory elements (CREs) or ''Cis''-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphoge ...
.


Structure

WRKY transcription factors contain either one or two WRKY protein domains. The WRKY protein domain is 60 to 70 amino acids long type of DNA binding domain. The domain is characterized by a highly conserved core WRKYGQK motif and a zinc finger region. The cysteine and
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the d ...
zinc finger domain occurs as a CX4-5CX22-23HXH or CX7CX23HXC type, where X can be any
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
. The zinc finger binds a Zn+2 ion, which is required for protein function. While the WRKYGQK is highly conserved in most WRKY domains, variation in the core sequence has been documented. A frequently occurring variant of the core sequence is WRKYGKK, which is present in most plant species. The structure of the WRKY protein domain was first determined in 2005 using
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
(NMR) and later by crystallography. The WRKY protein domain is a globular shape composed of five anti-parallel β-strands. The core WRKYGQK motif is found on the second β-strand. Eighteen amino acids are highly conserved in the WRKY protein domain, including the core motif, zinc-finger binding cysteines and histidines, and a triad forming a DWK salt bridge. The triad consist of a conserved tryptophan (W) of the core motif, along with an aspartic acid (D) four amino acids upstream and a lysine (K) 29 amino acids downstream of it, stabilizing the entire domain. Five amino acids on the third β-strand (PRSYY) are also well conserved in the WRKY domain. Importantly, the WRKY genes contain a conserved intron in the WRKY domain, which occurs at the location encoding for the PR of the PRSYY amino acid sequence, thus explaining the conservation of this motif.


WRKY-DNA Interaction

The WRKY domain forms a unique wedge-shaped structure that enters perpendicularly in the major groove of the DNA strand. WRKY protein domains interact with the (T/A)TGAC(T/A) cis-element, also called the W-box. Recent evidence suggests that the GAC core of the W-box is the primary target of the WRKY domain and flanking sequences help dictate DNA interaction with very specific WRKY proteins. The RKYGQK residues of the core motif and additional arginine and lysine residues of the WRKY domain are responsible for interaction with the phosphate backbone of seven consecutive DNA base pairs, including the GAC core. Changing the tryptophan,
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the G ...
, or either lysine of the WRKYGQK motif to
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side ...
completely abolishes DNA-binding, indicating these amino acids are essential for recognizing the W-box element. While not essential, altering the WRKYGQK motif arginine,
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
or
glutamine Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral ...
to alanine reduces DNA-binding to the W-box. Overall, these complex WRKY protein domain-DNA interactions results in gene activation necessary for numerous aspects of plant development and defense.


External links


WRKY family
a
PlantTFDB: Plant Transcription Factor DatabaseWRKY Transcription Factor Family
a
The Arabidopsis Information ResourceThe Rushton Lab

The Somssich LabThe Shen LabSomssich’s list of WRKY-related publicationsEulgem Lab


References

{{Reflist 2005 in science Plant proteins Protein domains