WIMPs
   HOME

TheInfoList



OR:

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
. There exists no formal definition of a WIMP, but broadly, a WIMP is a new
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, a ...
which interacts via
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
and any other force (or forces), potentially not part of the Standard Model itself, which is as weak as or weaker than the
weak nuclear force In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
, but also non-vanishing in its strength. Many WIMP candidates are expected to have been produced thermally in the early Universe, similarly to the particles of the Standard Model according to Big Bang cosmology, and usually will constitute cold dark matter. Obtaining the correct abundance of dark matter today via thermal production requires a self-
annihilation In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy ...
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
of \langle \sigma v \rangle \simeq 3 \times 10^ \mathrm^ \;\mathrm^, which is roughly what is expected for a new particle in the 100  GeV mass range that interacts via the electroweak force. Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, including
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s,
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s and
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s in nearby galaxies and galaxy clusters; direct detection experiments designed to measure the collision of WIMPs with nuclei in the laboratory, as well as attempts to directly produce WIMPs in colliders, such as the LHC. Because supersymmetric extensions of the Standard Model of particle physics readily predict a new particle with these properties, this apparent coincidence is known as the "WIMP miracle", and a stable supersymmetric partner has long been a prime WIMP candidate. However, recent null results from direct-detection experiments along with the failure to produce evidence of supersymmetry in the Large Hadron Collider (LHC) experiment has cast doubt on the simplest WIMP hypothesis.


Theoretical framework and properties

WIMP-like particles are predicted by
R-parity R-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservati ...
-conserving supersymmetry, a popular type of extension to the Standard Model of particle physics, although none of the large number of new particles in supersymmetry have been observed. WIMP-like particles are also predicted by universal extra dimension and little Higgs theories. The main theoretical characteristics of a WIMP are: *Interactions only through the
weak nuclear force In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
, or possibly other interactions with cross-sections no higher than the weak scale; *Large mass compared to standard particles (WIMPs with sub- GeV masses may be considered to be
light dark matter Light dark matter, in astronomy and cosmology, are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the ...
). Because of their lack of electromagnetic interaction with normal matter, WIMPs would be invisible through normal electromagnetic observations. Because of their large mass, they would be relatively slow moving and therefore "cold". Their relatively low velocities would be insufficient to overcome the mutual gravitational attraction, and as a result, WIMPs would tend to clump together. WIMPs are considered one of the main candidates for cold dark matter, the others being
massive compact halo objects A massive astrophysical compact halo object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space ...
(MACHOs) and
axions An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interes ...
. These names were deliberately chosen for contrast, with MACHOs named later than WIMPs. In contrast to MACHOs, there are no known stable particles within the Standard Model of particle physics that have all the properties of WIMPs. The particles that have little interaction with normal matter, such as
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s, are all very light, and hence would be fast moving, or "hot".


As dark matter

A decade after the dark matter problem was established in the 1970s, WIMPs were suggested as a potential solution to the issue. Although the existence of WIMPs in nature is still hypothetical, it would resolve a number of astrophysical and cosmological problems related to dark matter. There is consensus today among astronomers that most of the mass in the Universe is indeed dark. Simulations of a universe full of cold dark matter produce galaxy distributions that are roughly similar to what is observed. By contrast,
hot dark matter Hot dark matter (HDM) is a theoretical form of dark matter which consists of particles that travel with ultrarelativistic velocities. Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is character ...
would smear out the large-scale structure of galaxies and thus is not considered a viable cosmological model. WIMPs fit the model of a relic dark matter particle from the early Universe, when all particles were in a state of
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be i ...
. For sufficiently high temperatures, such as those existing in the early Universe, the dark matter particle and its antiparticle would have been both forming from and annihilating into lighter particles. As the Universe expanded and cooled, the average thermal energy of these lighter particles decreased and eventually became insufficient to form a dark matter particle-antiparticle pair. The annihilation of the dark matter particle-antiparticle pairs, however, would have continued, and the number density of dark matter particles would have begun to decrease exponentially. Eventually, however, the number density would become so low that the dark matter particle and antiparticle interaction would cease, and the number of dark matter particles would remain (roughly) constant as the Universe continued to expand. Particles with a larger interaction cross section would continue to annihilate for a longer period of time, and thus would have a smaller number density when the annihilation interaction ceases. Based on the current estimated abundance of dark matter in the Universe, if the dark matter particle is such a relic particle, the interaction cross section governing the particle-antiparticle annihilation can be no larger than the cross section for the weak interaction. If this model is correct, the dark matter particle would have the properties of the WIMP.


Indirect detection

Because WIMPs may only interact through gravitational and weak forces, they are extremely difficult to detect. However, there are many experiments underway to attempt to detect WIMPs both directly and indirectly. ''Indirect detection'' refers to the observation of annihilation or decay products of WIMPs far away from Earth. Indirect detection efforts typically focus on locations where WIMP dark matter is thought to accumulate the most: in the centers of galaxies and galaxy clusters, as well as in the smaller satellite galaxies of the Milky Way. These are particularly useful since they tend to contain very little baryonic matter, reducing the expected background from standard astrophysical processes. Typical indirect searches look for excess
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
, which are predicted both as final-state products of annihilation, or are produced as charged particles interact with ambient radiation via inverse Compton scattering. The spectrum and intensity of a gamma ray signal depends on the annihilation products, and must be computed on a model-by-model basis. Experiments that have placed bounds on WIMP annihilation, via the non-observation of an annihilation signal, include the Fermi-LAT gamma ray telescope and the VERITAS ground-based gamma ray observatory. Although the annihilation of WIMPs into Standard Model particles also predicts the production of high-energy neutrinos, their interaction rate is too low to reliably detect a dark matter signal at present. Future observations from the
IceCube The IceCube Neutrino Observatory (or simply IceCube) is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under ...
observatory in Antarctica may be able to differentiate WIMP-produced neutrinos from standard astrophysical neutrinos; however, by 2014, only 37 cosmological neutrinos had been observed, making such a distinction impossible. Another type of indirect WIMP signal could come from the Sun. Halo WIMPs may, as they pass through the Sun, interact with solar protons, helium nuclei as well as heavier elements. If a WIMP loses enough energy in such an interaction to fall below the local
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
, it would not have enough energy to escape the gravitational pull of the Sun and would remain gravitationally bound. As more and more WIMPs thermalize inside the Sun, they begin to annihilate with each other, forming a variety of particles, including high-energy
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s. These neutrinos may then travel to the Earth to be detected in one of the many neutrino telescopes, such as the
Super-Kamiokande Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ja, スーパーカミオカンデ) is a Neutrino detector, neutrino observatory located Kamioka Observatory, under Mount Ikeno ...
detector in Japan. The number of neutrino events detected per day at these detectors depends on the properties of the WIMP, as well as on the mass of the Higgs boson. Similar experiments are underway to detect neutrinos from WIMP annihilations within the Earth and from within the galactic center.


Direct detection

''Direct detection'' refers to the observation of the effects of a WIMP-nucleus collision as the dark matter passes through a detector in an Earth laboratory. While most WIMP models indicate that a large enough number of WIMPs must be captured in large celestial bodies for indirect detection experiments to succeed, it remains possible that these models are either incorrect or only explain part of the dark matter phenomenon. Thus, even with the multiple experiments dedicated to providing indirect evidence for the existence of cold dark matter, direct detection measurements are also necessary to solidify the theory of WIMPs. Although most WIMPs encountering the Sun or the Earth are expected to pass through without any effect, it is hoped that a large number of dark matter WIMPs crossing a sufficiently large detector will interact often enough to be seen—at least a few events per year. The general strategy of current attempts to detect WIMPs is to find very sensitive systems that can be scaled up to large volumes. This follows the lessons learned from the history of the discovery and (by now) routine detection of the neutrino.


Experimental techniques

Cryogenic crystal detectors – A technique used by the
Cryogenic Dark Matter Search The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of Weakly Interacting Massive Particles (or WIMPs). Using an array of semiconductor detectors at millikelvin temperatur ...
(CDMS) detector at the Soudan Mine relies on multiple very cold germanium and silicon crystals. The crystals (each about the size of a hockey puck) are cooled to about 50 mK. A layer of metal (aluminium and tungsten) at the surfaces is used to detect a WIMP passing through the crystal. This design hopes to detect vibrations in the crystal matrix generated by an atom being "kicked" by a WIMP. The tungsten transition edge sensors (TES) are held at the critical temperature so they are in the
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
state. Large crystal vibrations will generate heat in the metal and are detectable because of a change in resistance. CRESST, CoGeNT, and
EDELWEISS EDELWEISS (Expérience pour DEtecter Les WIMPs En Site Souterrain) is a dark matter search experiment located at the Modane Underground Laboratory in France. The experiment uses cryogenic detectors, measuring both the phonon and ionization signal ...
run similar setups. Noble gas scintillators – Another way of detecting atoms "knocked about" by a WIMP is to use scintillating material, so that light pulses are generated by the moving atom and detected, often with PMTs. Experiments such as
DEAP DEAP (Dark matter Experiment using Argon Pulse-shape discrimination) is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse- ...
at
SNOLAB SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities con ...
and DarkSide at the
LNGS Laboratori Nazionali del Gran Sasso (LNGS) is the largest underground research center in the world. Situated below Gran Sasso mountain in Italy, it is well known for particle physics research by the INFN. In addition to a surface portion of the ...
instrument a very large target mass of liquid argon for sensitive WIMP searches. ZEPLIN, and
XENON Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
used xenon to exclude WIMPs at higher sensitivity, with the most stringent limits to date provided by the XENON1T detector, utilizing 3.5 tons of liquid xenon. Even larger multi-ton liquid xenon detectors have been approved for construction from the
XENON Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
, LUX-ZEPLIN and PandaX collaborations. Crystal scintillators – Instead of a liquid noble gas, an in principle simpler approach is the use of a scintillating crystal such as NaI(Tl). This approach is taken by DAMA/LIBRA, an experiment that observed an annular modulation of the signal consistent with WIMP detection (see '). Several experiments are attempting to replicate those results, including ANAIS and DM-Ice, which is codeploying NaI crystals with the
IceCube The IceCube Neutrino Observatory (or simply IceCube) is a neutrino observatory constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under ...
detector at the South Pole. KIMS is approaching the same problem using CsI(Tl) as a scintillator. Bubble chambers – The PICASSO (Project In Canada to Search for Supersymmetric Objects) experiment is a direct dark matter search experiment that is located at
SNOLAB SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities con ...
in Canada. It uses bubble detectors with
Freon Freon ( ) is a registered trademark of the Chemours Company and generic descriptor for a number of halocarbon products. They are stable, nonflammable, low toxicity gases or liquids which have generally been used as refrigerants and as aerosol prope ...
as the active mass. PICASSO is predominantly sensitive to spin-dependent interactions of WIMPs with the fluorine atoms in the Freon. COUPP, a similar experiment using trifluoroiodomethane(CF3I), published limits for mass above 20 GeV in 2011. The two experiments merged into PICO collaboration in 2012. A bubble detector is a radiation sensitive device that uses small droplets of superheated liquid that are suspended in a gel matrix. It uses the principle of a
bubble chamber A bubble chamber is a vessel filled with a superheated transparent liquid (most often liquid hydrogen) used to detect electrically charged particles moving through it. It was invented in 1952 by Donald A. Glaser, for which he was awarded the 1 ...
but, since only the small droplets can undergo a
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
at a time, the detector can stay active for much longer periods. When enough energy is deposited in a droplet by ionizing radiation, the superheated droplet becomes a gas bubble. The bubble development is accompanied by an acoustic shock wave that is picked up by piezo-electric sensors. The main advantage of the bubble detector technique is that the detector is almost insensitive to background radiation. The detector sensitivity can be adjusted by changing the temperature, typically operated between 15 °C and 55 °C. There is another similar experiment using this technique in Europe calle
SIMPLE
PICASSO reports results (November 2009) for spin-dependent WIMP interactions on 19F, for masses of 24 Gev new stringent limits have been obtained on the spin-dependent cross section of 13.9 pb (90% CL). The obtained limits restrict recent interpretations of the DAMA/LIBRA annual modulation effect in terms of spin dependent interactions. PICO is an expansion of the concept planned in 2015. Other types of detectors –
Time projection chamber In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particl ...
s (TPCs) filled with low pressure gases are being studied for WIMP detection. The Directional Recoil Identification From Tracks (DRIFT) collaboration is attempting to utilize the predicted directionality of the WIMP signal. DRIFT uses a
carbon disulfide Carbon disulfide (also spelled as carbon disulphide) is a neurotoxic, colorless, volatile liquid with the formula and structure . The compound is used frequently as a building block in organic chemistry as well as an industrial and chemical n ...
target, that allows WIMP recoils to travel several millimetres, leaving a track of charged particles. This charged track is drifted to an MWPC readout plane that allows it to be reconstructed in three dimensions and determine the origin direction. DMTPC is a similar experiment with CF4 gas. The DAMIC (DArk Matter In CCDs) and SENSEI (Sub Electron Noise Skipper CCD Experimental Instrument) collaborations employ the use of scientific Charge Coupled Devices (CCDs) to detect light Dark Matter. The CCDs act as both the detector target and the readout instrumentation. WIMP interactions with the bulk of the CCD can induce the creation of electron-hole pairs, which are then collected and readout by the CCDs. In order to decrease the noise and achieve detection of single electrons, the experiments make use of a type of CCD known as the Skipper CCD, which allows for averaging over repeated measurements of the same collected charge.


Recent limits

There are currently no confirmed detections of dark matter from direct detection experiments, with the strongest exclusion limits coming from the LUX and SuperCDMS experiments, as shown in figure 2. With 370 kilograms of xenon LUX is more sensitive than XENON or CDMS. First results from October 2013 report that no signals were seen, appearing to refute results obtained from less sensitive instruments. and this was confirmed after the final data run ended in May 2016. Historically there have been four anomalous sets of data from different direct detection experiments, two of which have now been explained with backgrounds ( CoGeNT and CRESST-II), and two which remain unexplained ( DAMA/LIBRA and CDMS-Si). In February 2010, researchers at CDMS announced that they had observed two events that may have been caused by WIMP-nucleus collisions. CoGeNT, a smaller detector using a single germanium puck, designed to sense WIMPs with smaller masses, reported hundreds of detection events in 56 days. They observed an annual modulation in the event rate that could indicate light dark matter. However a dark matter origin for the CoGeNT events has been refuted by more recent analyses, in favour of an explanation in terms of a background from surface events. Annual modulation is one of the predicted signatures of a WIMP signal, and on this basis the DAMA collaboration has claimed a positive detection. Other groups, however, have not confirmed this result. The CDMS data made public in May 2004 exclude the entire DAMA signal region given certain standard assumptions about the properties of the WIMPs and the dark matter halo, and this has been followed by many other experiments (see Fig 2, right). The COSINE-100 collaboration (a merging of KIMS and DM-Ice groups) published their results on replicating the DAMA/LIBRA signal in December 2018 in journal Nature; their conclusion was that "this result rules out WIMP–nucleon interactions as the cause of the annual modulation observed by the DAMA collaboration". In 2021 new results from COSINE-100 and ANAIS-112 both failed to replicate the DAMA/LIBRA signal and in August 2022 COSINE-100 applied an analysis method similar to one used by DAMA/LIBRA and found a similar annual modulation suggesting the signal could be just a statistical artifact supporting a hypothesis first put forward on 2020.


The future of direct detection

The 2020s should see the emergence of several multi-tonne mass direct detection experiments, which will probe WIMP-nucleus cross sections orders of magnitude smaller than the current state-of-the-art sensitivity. Examples of such next-generation experiments are LUX-ZEPLIN (LZ) and XENONnT, which are multi-tonne liquid xenon experiments, followed by DARWIN, another proposed liquid xenon direct detection experiment of 50–100 tonnes. Such multi-tonne experiments will also face a new background in the form of neutrinos, which will limit their ability to probe the WIMP parameter space beyond a certain point, known as the neutrino floor. However, although its name may imply a hard limit, the neutrino floor represents the region of parameter space beyond which experimental sensitivity can only improve at best as the square root of exposure (the product of detector mass and running time). For WIMP masses below 10 GeV the dominant source of neutrino background is from the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, while for higher masses the background contains contributions from atmospheric neutrinos and the
diffuse supernova neutrino background The diffuse supernova neutrino background (DSNB) is a theoretical population of neutrinos (and anti-neutrinos) cumulatively originating from all of the supernovae events which have occurred throughout the Universe. Sources An individual supernova w ...
. In December 2021, results from PandaX have found no signal in their data, with a lowest excluded cross section of 3.8\times10^  pb at 40 GeV with 90% confidence level. In July 2022 the LZ experiment published its first limit excluding cross sections above 5.9\times10^  pb at 30 GeV with 90% confidence level.


See also

* * * * * Weakly Interacting Slender Particle (WISP) *Theoretical candidates ** ** ** ** **


References


Further reading

* * * *


External links


Particle Data Group review article on WIMP search
(S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) Appendix : OMITTED FROM SUMMARY TABLE) * Timothy J. Sumner
Experimental Searches for Dark Matter
in Living Reviews in Relativity, Vol 5, 2002

* {{Portal bar, Physics, Astronomy, Stars, Spaceflight, Outer space, Solar System, Science Dark matter Physics beyond the Standard Model Astroparticle physics Exotic matter Hypothetical particles Physics experiments