Very Large Telescope
   HOME

TheInfoList



OR:

The Very Large Telescope (VLT) is a telescope facility operated by the
European Southern Observatory The European Organisation for Astronomical Research in the Southern Hemisphere, commonly referred to as the European Southern Observatory (ESO), is an intergovernmental research organisation made up of 16 member states for ground-based ast ...
on Cerro Paranal in the Atacama Desert of northern
Chile Chile, officially the Republic of Chile, is a country in the western part of South America. It is the southernmost country in the world, and the closest to Antarctica, occupying a long and narrow strip of land between the Andes to the eas ...
. It consists of four individual telescopes, each with a primary mirror 8.2 m across, which are generally used separately but can be used together to achieve very high
angular resolution Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolut ...
. The four separate
optical telescope An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through elect ...
s are known as ''Antu'', ''Kueyen'', ''Melipal'', and ''Yepun'', which are all words for astronomical objects in the
Mapuche language Mapuche (, Mapuche & Spanish: , or Mapudungun; from ' 'land' and ' 'speak, speech') is an Araucanian language related to Huilliche spoken in south-central Chile and west-central Argentina by the Mapuche people (from ''mapu'' 'land' and ''che ...
. The telescopes form an array complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The VLT operates at visible and
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s. Each individual telescope can detect objects roughly four billion times fainter than can be detected with the
naked eye Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection. Vision corrected to norma ...
, and when all the telescopes are combined, the facility can achieve an
angular resolution Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolut ...
of about 0.002 arcsecond. In single telescope mode of operation angular resolution is about 0.05 arcsecond. The VLT is the most productive ground-based facility for astronomy, with only the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
generating more scientific papers among facilities operating at visible wavelengths. Among the pioneering observations carried out using the VLT are the first direct image of an
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
, the tracking of individual stars moving around the supermassive black hole at the centre of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, and observations of the afterglow of the furthest known gamma-ray burst.


General information

The VLT consists of an arrangement of four large (8.2 metre diameter) telescopes (called Unit Telescopes or UTs) with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer also includes a set of four 1.8 meter diameter movable telescopes dedicated to interferometric observations. The first of the UTs started operating in May 1998 and was offered to the astronomical community on 1 April 1999. The other telescopes became operational in 1999 and 2000, enabling multi-telescope VLT capability. Four 1.8-metre Auxiliary Telescopes (ATs) have been added to the VLTI to make it available when the UTs are being used for other projects. These ATs were installed and became operational between 2004 and 2007. The VLT's 8.2-meter telescopes were originally designed to operate in three modes: * as a set of four independent telescopes (this is the primary mode of operation). * as a single large
coherent Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a deriv ...
interferometric instrument (the VLT Interferometer or VLTI), for extra resolution. This mode is used for observations of relatively bright sources with small angular extent. * as a single large incoherent instrument, for extra light-gathering capacity. The instrumentation required to obtain a combined incoherent focus was not originally built. In 2009, new instrumentation proposals were put forward to potentially make that observing mode available. Multiple telescopes are sometimes independently pointed at the same object, either to increase the total light-gathering power or to provide simultaneous observations with complementary instruments.


Unit telescopes

The UTs are equipped with a large set of instruments permitting observations to be performed from the near-ultraviolet to the mid-infrared (i.e. a large fraction of the light wavelengths accessible from the surface of the Earth), with the full range of techniques including high-resolution spectroscopy, multi-object spectroscopy, imaging, and high-resolution imaging. In particular, the VLT has several adaptive optics systems, which correct for the effects of atmospheric turbulence, providing images almost as sharp as if the telescope were in space. In the near-infrared, the adaptive optics images of the VLT are up to three times sharper than those of the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
, and the spectroscopic resolution is many times better than Hubble. The VLTs are noted for their high level of observing efficiency and automation. The 8.2 m-diameter telescopes are housed in compact, thermally controlled buildings, which rotate synchronously with the telescopes. This design minimises any adverse effects on the observing conditions, for instance from air turbulence in the telescope tube, which might otherwise occur due to variations in the temperature and wind flow. The principal role of the main VLT telescopes is to operate as four independent telescopes. The interferometry (combining light from multiple telescopes) is used about 20 percent of the time for very high-resolution on bright objects, for example, on
Betelgeuse Betelgeuse is a red supergiant of spectral type M1-2 and one of the largest stars visible to the naked eye. It is usually the tenth-brightest star in the night sky and, after Rigel, the second-brightest in the constellation of O ...
. This mode allows astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in tunnels where the light paths must be kept equal within differences of less than 1 μm over a light path of a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds.


Mapuche names for the Unit Telescopes

It had long been ESO's intention to provide "real" names to the four VLT Unit Telescopes, to replace the original technical designations of UT1 to UT4. In March 1999, at the time of the Paranal inauguration, four meaningful names of objects in the sky in the
Mapuche The Mapuche ( (Mapuche & Spanish: )) are a group of indigenous inhabitants of south-central Chile and southwestern Argentina, including parts of Patagonia. The collective term refers to a wide-ranging ethnicity composed of various groups who s ...
language were chosen. This indigenous people lives mostly south of Santiago de Chile. An essay contest was arranged in this connection among schoolchildren of the Chilean II Region of which Antofagasta is the capital to write about the implications of these names. It drew many entries dealing with the cultural heritage of ESO's host country. The winning essay was submitted by 17-year-old Jorssy Albanez Castilla from Chuquicamata near the city of Calama. She received the prize, an amateur telescope, during the inauguration of the Paranal site. Unit Telescopes 1–4 are since known as ''Antu'' (Sun), ''Kueyen'' (Moon), ''Melipal'' (
Southern Cross Crux () is a constellation of the southern sky that is centred on four bright stars in a cross-shaped asterism commonly known as the Southern Cross. It lies on the southern end of the Milky Way's visible band. The name ''Crux'' is Latin for ...
), and ''Yepun'' (Evening Star), respectively. Originally there was some confusion as to whether ''Yepun'' actually stands for the evening star Venus, because a Spanish-Mapuche dictionary from the 1940s wrongly translated ''Yepun'' as "Sirius".


Auxiliary telescopes

Although the four 8.2-metre Unit Telescopes can be combined in the VLTI, their observation time is spent mostly on individual observations, and are used for
interferometric Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
observations for a limited number of nights every year. However, the four smaller 1.8-metre ATs are available and dedicated to interferometry to allow the VLTI to operate every night. The top part of each AT is a round enclosure, made from two sets of three segments, which open and close. Its job is to protect the delicate 1.8-metre telescope from the desert conditions. The enclosure is supported by the boxy transporter section, which also contains electronics cabinets, liquid cooling systems, air-conditioning units, power supplies, and more. During astronomical observations the enclosure and transporter are mechanically isolated from the telescope, to ensure that no vibrations compromise the data collected. The transporter section runs on tracks, so the ATs can be moved to 30 different observing locations. As the VLTI acts rather like a single telescope as large as the group of telescopes combined, changing the positions of the ATs means that the VLTI can be adjusted according to the needs of the observing project. The reconfigurable nature of the VLTI is similar to that of the Very Large Array.


Scientific results

Results from the VLT have led to the publication of an average of more than one peer-reviewed scientific paper per day. For instance in 2017, over 600 refereed scientific papers were published based on VLT data. The telescope's scientific discoveries include direct imaging of Beta Pictoris b, the first extrasolar planet so imaged, tracking individual stars moving around the supermassive black hole at the centre of the Milky Way, and observing the afterglow of the furthest known gamma-ray burst. In 2018, the VLT helped to perform the first successful test of
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born Theoretical physics, theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for d ...
's
General Relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
on the motion of a star passing through the extreme gravitational field near the supermassive black hole, that is the gravitational redshift. In fact, the observation has been conducted for over 26 years with the SINFONI and NACO adaptive optics instruments in the VLT while the new approach in 2018 also used the beam-combiner instrument GRAVITY. The Galactic Centre team at the
Max Planck Institute for Extraterrestrial Physics The Max Planck Institute for Extraterrestrial Physics is a Max Planck Institute, located in Garching, near Munich, Germany. In 1991 the Max Planck Institute for Physics and Astrophysics split up into the Max Planck Institute for Extraterrestrial P ...
(MPE) had use the observation revealed the effects for the first time. Other discoveries with VLT's signature include the detection of carbon monoxide molecules in a galaxy located almost 11 billion light-years away for the first time, a feat that had remained elusive for 25 years. This has allowed astronomers to obtain the most precise measurement of the cosmic temperature at such a remote epoch. Another important study was that of the violent flares from the supermassive black hole at the centre of the Milky Way. The VLT and APEX teamed up to reveal material being stretched out as it orbits in the intense gravity close to the central black hole. Using the VLT, astronomers have also estimated the age of extremely old stars in the
NGC 6397 NGC 6397 (also known as Caldwell 86) is a globular cluster in the constellation Ara. It is located about 7,800 light-years from Earth, making it one of the two nearest globular clusters to Earth (the other one being Messier 4). The cluster cont ...
cluster. Based on
stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is cons ...
models, two stars were found to be 13.4 ± 0.8 billion years old, that is, they are from the earliest era of star formation in the Universe. They have also analysed the atmosphere around a super-Earth exoplanet for the first time using the VLT. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. In all, of the top 10 discoveries done at ESO's observatories, seven made use of the VLT. File:Potw1239a.jpg


Technical details


Telescopes

Each Unit Telescope is a Ritchey-Chretien
Cassegrain telescope The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the ...
with a 22-tonne 8.2 metre
Zerodur Zerodur (notation of the manufacturer: ZERODUR®), registered trademarkof Schott AG, is a lithium-aluminosilicate glass-ceramic produced by Schott AG since 1968. It has been used for a number of very large telescope mirrors including GTC, Keck ...
primary mirror of 14.4 m focal length, and a 1.1 metre lightweight beryllium secondary mirror. A flat tertiary mirror diverts the light to one of two instruments at the f/15 Nasmyth foci on either side, with a system focal length of 120 m, or the tertiary tilts aside to allow light through the primary mirror central hole to a third instrument at the Cassegrain focus. This allows switching between any of the three instruments within 5 minutes, to match observing conditions. Additional mirrors can send the light via tunnels to the central VLTI beam-combiners. The maximum field-of-view (at Nasmyth foci) is around 27 arcminutes diameter, slightly smaller than the full moon, though most instruments view a narrower field. Each telescope has an alt-azimuth mount with total mass around 350 tonnes, and uses
active optics Active optics is a technology used with reflecting telescopes developed in the 1980s, which actively shapes a telescope's mirrors to prevent deformation due to external influences such as wind, temperature, and mechanical stress. Without active o ...
with 150 supports on the back of the primary mirror to control the shape of the thin (177mm thick) mirror by computers.


Instruments

The VLT instrumentation programme is the most ambitious programme ever conceived for a single observatory. It includes large-field imagers, adaptive optics corrected cameras and spectrographs, as well as high-resolution and multi-object spectrographs and covers a broad spectral region, from deep ultraviolet (300 nm) to mid-infrared (24 μm) wavelengths. ; AMBER (VLTI) : The Astronomical Multi-Beam Recombiner instrument combines three telescopes of the VLT at the same time, dispersing the light in a spectrograph to analyse the composition and shape of the observed object. AMBER is notably the "most-productive interferometric instrument ever". It has been decommissioned. ; CRIRES and CRIRES+ : The Cryogenic Infrared Echelle Spectrograph is an adaptive optics assisted echelle spectrograph. It provides a resolving power of up to 100,000 in the infrared spectral range from 1 to 5 micrometres.

From 2014 to 2020 it underwent a major upgrade to CRIRES+ to provide ten times larger simultaneous wavelength coverage. A new detector focal plane array of three Hawaii 2RG detectors with a 5.3 μm cut-off wavelength replaced the existing detectors, a new spectropolarimetric unit is added, and the calibration system is enhanced. One of the scientific objectives of CRIRES+ is in-transit

spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
of exoplanets, which currently provides us with the only means of studying
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
ary atmospheres. Transiting planets are almost always close-in planets that are hot and radiate most of their light in the infrared (IR). Furthermore, the IR is a spectral region where lines of
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
gases like carbon monoxide (CO), ammonia (NH3), and methane (CH4), etc. are expected from the exoplanetary
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A ...
. This important wavelength region is covered by CRIRES+, which will additionally allow tracking multiple absorption lines simultaneously.

;
ESPRESSO Espresso (, ) is a coffee-brewing method of Italian origin, in which a small amount of nearly boiling water (about ) is forced under of pressure through finely-ground coffee beans. Espresso can be made with a wide variety of coffee beans a ...
: Echelle Spectrograph for Rocky Exoplanet- and Stable Spectroscopic Observations) is a high-resolution, fiber-fed and cross-dispersed echelle spectrograph for the visible wavelength range, capable of operating in 1-UT mode (using one of the four telescopes) and in 4-UT mode (using all four), for the search for rocky extra-solar planets in the habitable zone of their host stars. Its main feature is the spectroscopic stability and the radial-velocity precision. The requirement is to reach 10 cm/s, but the aimed goal is to obtain a precision level of few cm/s. ESPRESSO was installed and commissioned at the VLT in 2017–18. ; FLAMES : Fibre Large Array Multi-Element Spectrograph is a multi-object fibre feed unit for UVES and GIRAFFE, the latter allowing the capability for simultaneously studying hundreds of individual stars in nearby galaxies at moderate spectral resolution in the visible. ; FORS1/FORS2 : Focal Reducer and Low Dispersion Spectrograph is a visible light camera and Multi Object
Spectrograph An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
with a 6.8 arcminute field of view. FORS2 is an upgraded version over FORS1 and includes further multi-object spectroscopy capabilities. FORS1 was retired in 2009 to make space for X-SHOOTER; FORS2 continues to operate as of 2021. ; GRAVITY (VLTI) : GRAVITY is an adaptive optics assisted, near-infrared (NIR) instrument for micro-arcsecond precision narrow-angle astrometry and interferometric phase referenced imaging of faint celestial objects. This instrument interferometrically combines NIR light collected by four telescopes at the VLTI. ; HAWK-I : The High Acuity Wide field K-band Imager is a near-infrared imager with a relatively large field of view, about 8x8 arcminutes. ; ISAAC : The Infrared Spectrometer And Array Camera was a near infrared imager and spectrograph; it operated successfully from 2000 to 2013 and was then retired to make way for SPHERE, since most of its capabilities can now be delivered by the newer HAWK-I or KMOS. ; KMOS : KMOS (K-band Multi Object Spectrograph) is a cryogenic near-infrared multi-object spectrometer, observing 24 objects simultaneously, intended primarily for the study of distant galaxies. ; MATISSE (VLTI) : The Multi Aperture Mid-Infrared Spectroscopic Experiment is an infrared spectro-interferometer of the VLT-Interferometer, which potentially combines the beams of all four Unit Telescopes (UTs) and four Auxiliary Telescopes (ATs). The instrument is used for image reconstruction. After 12 years of development It saw its first light at the telescope in Paranal in March 2018. ; MIDI (VLTI) : MIDI is an instrument combining two telescopes of the VLT in the mid-infrared, dispersing the light in a spectrograph to analyse the dust composition and shape of the observed object. MIDI is notably the second most-productive interferometric instrument ever (surpassed by
AMBER Amber is fossilized tree resin that has been appreciated for its color and natural beauty since Neolithic times. Much valued from antiquity to the present as a gemstone, amber is made into a variety of decorative objects."Amber" (2004). In M ...
recently). MIDI was retired in March 2015 to prepare the VLTI for the arrival of GRAVITY and MATISSE. ;
MUSE In ancient Greek religion and mythology, the Muses ( grc, Μοῦσαι, Moûsai, el, Μούσες, Múses) are the inspirational goddesses of literature, science, and the arts. They were considered the source of the knowledge embodied in ...
: MUSE is a huge "3-dimensional" spectroscopic explorer which will provide complete visible spectra of all objects contained in "pencil beams" through the Universe. ; NACO : NAOS-CONICA, NAOS meaning Nasmyth Adaptive Optics System and CONICA, meaning Coude Near Infrared Camera) is an adaptive optics facility which produces infrared images as sharp as if taken in space and includes spectroscopic, polarimetric and coronagraphic capabilities. ;
PIONIER (VLTI) The Precision Integrated-Optics Near-infrared Imaging ExpeRiment (PIONIER) is a visiting instrument at the ESO's Paranal Observatory, part of the VLTI astronomical observatory. It combines the light from four telescopes simultaneously and provide ...
: is an instrument to combine the light of all 8-metre telescopes, allowing to pick up details about 16 times finer than can be seen with one UT. ; SINFONI : the Spectrograph for Integral Field Observations in the Near Infrared) was a medium resolution,
near-infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from arou ...
(1–2.5 micrometres) integral field spectrograph fed by an adaptive optics module. It operated from 2003, then retired in June 2019 to make space for the future ERIS. ;
SPHERE A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
: The Spectro-Polarimetric High-Contrast Exoplanet Research, a high-contrast adaptive optics system dedicated to the discovery and study of
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s. ; ULTRACAM : ULTRACAM is a visitor instrument for ultra-high-speed photometry of variable objects. ULTRACAM provides three simultaneous bands of optical photometry. ; UVES : The Ultraviolet and Visual Echelle Spectrograph is a high-resolution
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
and visible light echelle spectrograph. ; VIMOS : The Visible Multi-Object Spectrograph delivered visible images and spectra of up to 1,000 galaxies at a time in a 14 × 14 arcmin field of view. It was mainly used for several large redshift surveys of distant galaxies, including VVDS, zCOSMOS and VIPERS. It was retired in 2018 to make space for the return of CRIRES+. ; VINCI (VLTI) : VINCI was a test instrument combining two telescopes of the VLT. It was the first-light instrument of the VLTI and is no longer in use. ; VISIR : The VLT spectrometer and imager for the mid-infrared provides diffraction-limited imaging and spectroscopy at a range of resolutions in the 10 and 20 micrometre mid-infrared (MIR) atmospheric windows. VISIR hosts the NEAR Science Demonstration, where NEAR is New Earths in the Alpha Centauri Region. ; X-Shooter : X-Shooter is the first second-generation instrument, operating since 2009. It is a very wide-band V to near infraredsingle-object spectrometer designed to explore the properties of rare, unusual or unidentified sources.


Interferometry

In its
interferometric Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
operating mode, the light from the telescopes is reflected off mirrors and directed through tunnels to a central beam combining laboratory. In the year 2001, during commissioning, the VLTI successfully measured the angular diameters of four red dwarfs including
Proxima Centauri Proxima Centauri is a small, low-mass star located away from the Sun in the southern constellation of Centaurus. Its Latin name means the 'nearest tarof Centaurus'. It was discovered in 1915 by Robert Innes and is the nearest-k ...
. During this operation it achieved an angular resolution of ±0.08 milli-arc-seconds (0.388 nano-radians). This is comparable to the resolution achieved using other arrays such as the Navy Prototype Optical Interferometer and the CHARA array. Unlike many earlier optical and infrared interferometers, the
Astronomical Multi-Beam Recombiner AMBER, the Astronomical Multi-Beam Recombiner, is an instrument mounted on the Very Large Telescope (VLT), combining the light of the three Unit Telescopes in the near-infrared of the VLT-Interferometer (VLTI). It is at the source of a considerab ...
(AMBER) instrument on VLTI was initially designed to perform coherent integration (which requires signal-to-noise greater than one in each atmospheric coherence time). Using the big telescopes and coherent integration, the faintest object the VLTI can observe is magnitude 7 in the near infrared for broadband observations, similar to many other near infrared / optical interferometers without fringe tracking. In 2011, an incoherent integration mode was introduced called AMBER "blind mode", which is more similar to the observation mode used at earlier interferometer arrays such as COAST, IOTA and CHARA. In this "blind mode", AMBER can observe sources as faint as K=10 in medium spectral resolution. At more challenging mid-infrared wavelengths, the VLTI can reach magnitude 4.5, significantly fainter than the
Infrared Spatial Interferometer The Infrared Spatial Interferometer (ISI) is an astronomical interferometer array of three telescopes operating in the mid- infrared. The telescopes are fully mobile and their current site on Mount Wilson allows for placements as far as apar ...
. When fringe tracking is introduced, the limiting magnitude of the VLTI is expected to improve by a factor of almost 1000, reaching a magnitude of about 14. This is similar to what is expected for other fringe tracking interferometers. In spectroscopic mode, the VLTI can currently reach a magnitude of 1.5. The VLTI can work in a fully integrated way, so that interferometric observations are actually quite simple to prepare and execute. The VLTI has become worldwide the first general user optical/infrared interferometric facility offered with this kind of service to the astronomical community. Because of the many mirrors involved in the optical train, about 95% of the light is lost before reaching the instruments at a wavelength of 1 μm, 90% at 2 μm and 75% at 10 μm. This refers to reflection off 32 surfaces including the Coudé train, the star separator, the main delay line, beam compressor and feeding optics. Additionally, the interferometric technique is such that it is very efficient only for objects that are small enough that all their light is concentrated. For instance, an object with a relatively low surface brightness such as the moon cannot be observed, because its light is too diluted. Only targets which are at temperatures of more than 1,000° C have a surface brightness high enough to be observed in the mid-infrared, and objects must be at several thousands of degrees Celsius for near-infrared observations using the VLTI. This includes most of the stars in the solar neighborhood and many extragalactic objects such as bright active galactic nuclei, but this sensitivity limit rules out
interferometric Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
observations of most solar-system objects. Although the use of large telescope diameters and adaptive optics correction can improve the sensitivity, this cannot extend the reach of optical interferometry beyond nearby stars and the brightest active galactic nuclei. Because the Unit Telescopes are used most of the time independently, they are used in the interferometric mode mostly during bright time (that is, close to full moon). At other times,
interferometry Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
is done using 1.8 meter Auxiliary Telescopes (ATs), which are dedicated to full-time interferometric measurements. The first observations using a pair of ATs were conducted in February 2005, and all the four ATs have now been commissioned. For interferometric observations on the brightest objects, there is little benefit in using 8 meter telescopes rather than 1.8 meter telescopes. The first two instruments at the VLTI were VINCI (a test instrument used to set up the system, now decommissioned) and MIDI, which only allow two telescopes to be used at any one time. With the installation of the three-telescope AMBER closure-phase instrument in 2005, the first imaging observations from the VLTI are expected soon. Deployment of the Phase Referenced Imaging and Microarcsecond Astrometry (PRIMA) instrument started 2008 with the aim to allow phase-referenced measurements in either an astrometric two-beam mode or as a fringe-tracker successor to VINCI, operated concurrent with one of the other instruments. After falling drastically behind schedule and failing to meet some specifications, in December 2004 the VLT Interferometer became the target of a second ESO "recovery plan". This involves additional effort concentrated on improvements to fringe tracking and the performance of the main delay lines. Note that this only applies to the interferometer and not other instruments on Paranal. In 2005, the VLTI was routinely producing observations, although with a brighter limiting magnitude and poorer observing efficiency than expected. , the VLTI had already led to the publication of 89 peer-reviewed publications and had published a first-ever image of the inner structure of the mysterious Eta Carinae. In March 2011, the PIONIER instrument for the first time simultaneously combined the light of the four Unit Telescopes, potentially making VLTI the biggest optical telescope in the world. However, this attempt was not really a success. The first successful attempt was in February 2012, with four telescopes combined into a 130-meter diameter mirror. In March 2019, ESO astronomers, employing the GRAVITY instrument on their Very Large Telescope Interferometer (VLTI), announced the first direct detection of an
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
,
HR 8799 e HR 8799 e is a large exoplanet, orbiting the star HR 8799, which lies 129 light-years from Earth. This gas giant is between 5 and 10 times the mass of Jupiter, the largest planet in the Planetary System. Due to their young age and high temperature ...
, using optical interferometry.


In popular culture

One of the large mirrors of the telescopes was the subject of an episode of the
National Geographic Channel National Geographic (formerly National Geographic Channel; abbreviated and trademarked as Nat Geo or Nat Geo TV) is an American pay television network and flagship channel owned by the National Geographic Global Networks unit of Disney General ...
's reality series ''
World's Toughest Fixes ''World's Toughest Fixes'' is an American reality series that premiered on the National Geographic Channel on September 28, 2008. It featured Sean Riley participating in various "tough fixes"; repairs and renovations done on equipment that is ver ...
'', where a crew of engineers removed and transported the mirror to be cleaned and re-coated with
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
. The job required battling strong winds, fixing a broken pump in a giant washing machine and resolving a rigging issue. The area surrounding the Very Large Telescope was featured in the 2008 film ''
Quantum of Solace ''Quantum of Solace'' is a 2008 spy film and the twenty-second in the ''James Bond'' series produced by Eon Productions. It is the sequel to ''Casino Royale'' (2006). Directed by Marc Forster and written by Neil Purvis, Robert Wade, and ...
''. The ESO Hotel, the Residencia, served as a backdrop for part of the
James Bond The ''James Bond'' series focuses on a fictional British Secret Service agent created in 1953 by writer Ian Fleming, who featured him in twelve novels and two short-story collections. Since Fleming's death in 1964, eight other authors hav ...
movie. Producer Michael G. Wilson said: "The Residencia of Paranal Observatory caught the attention of our director, Marc Forster and production designer, Dennis Gassner, both for its exceptional design and its remote location in the Atacama desert. It is a true oasis and the perfect hide out for Dominic Greene, our villain, whom 007 is tracking in our new James Bond film."


See also

* Cerro Tololo Inter-American Observatory *
Extremely large telescope The Extremely Large Telescope (ELT) is an astronomical observatory currently under construction. When completed, it is planned to be the world's largest optical/near-infrared extremely large telescope. Part of the European Southern Observatory ...
* European Extremely Large Telescope * Thirty Meter Telescope * Giant Magellan Telescope * La Silla Observatory *
List of deep fields In astronomy, a deep field is an image of a portion of the sky taken with a very long exposure time, in order to detect and study faint objects. The depth of the field refers to the apparent magnitude or the flux of the faintest objects that can b ...
* List of largest optical reflecting telescopes * Llano de Chajnantor Observatory * Mauna Kea Observatories *
Overwhelmingly Large Telescope The Overwhelmingly Large Telescope (OWL) was a conceptual design by the European Southern Observatory (ESO) organization for an extremely large telescope, which was intended to have a single aperture of 100 meters in diameter. Because of the c ...
* Paranal Observatory * Roque de los Muchachos Observatory


References


External links

*
ESO VLT
official site for the 8 m and 1.8 m telescopes.

official site for the interferometer (combining the telescopes)
Auxiliary Telescopes
- Very Large Telescope Interferometer **Full list of th
VLT instruments
including those of VLTI
WorldWide Telescope Web Client
including archives from the VLT
VLT imagesESO InterferometryDelay Lines for the Very Large Telescopes
@Dutch Space
World's Toughest Fixes
website. {{Authority control European Southern Observatory Buildings and structures in Antofagasta Region Interferometric telescopes Astronomical observatories in Chile Infrared telescopes Optical telescopes Articles containing video clips 1998 establishments in Chile de:Paranal-Observatorium#Very Large Telescope