Velamen
   HOME

TheInfoList



OR:

Velamen or velamen radicum is a spongy, multiple
epidermis The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and hypodermis. The epidermis layer provides a barrier to infection from environmental pathogens and regulates the amount of water rele ...
that covers the roots of some
epiphytic An epiphyte is an organism that grows on the surface of a plant and derives its moisture and nutrients from the air, rain, water (in marine environments) or from debris accumulating around it. The plants on which epiphytes grow are called phoroph ...
or semi-epiphytic plants, such as
orchid Orchids are plants that belong to the family Orchidaceae (), a diverse and widespread group of flowering plants with blooms that are often colourful and fragrant. Along with the Asteraceae, they are one of the two largest families of flowering ...
and ''
Clivia ''Clivia'' is a genus of monocot flowering plants native to southern Africa. They are from the family Amaryllidaceae, subfamily Amaryllidoideae. Common names are Natal lily or bush lily. They are herbaceous or evergreen perennial plants, with g ...
'' species. The velamen of an orchid is the white or gray covering of aerial roots (when dry, and usually more green when wet as a result of the appearance of underlying photosynthetic structures). It is many cell layers thick and capable of absorbing atmospheric moisture and nutrients, but its main function may lie in protecting the underlying cells against damaging UV rays (Chomicki et al., 2015). Often, the roots of orchids are associated with
symbiotic Symbiosis (from Greek , , "living together", from , , "together", and , bíōsis, "living") is any type of a close and long-term biological interaction between two different biological organisms, be it mutualistic, commensalistic, or parasit ...
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
or
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
; the latter may fix nutrients from the air. This functionality allows the orchid to exist in locations that provide a reproductive or vegetative advantage such as improved exposure or reduced competition from other plant species. The velamen also serves a mechanical function, protecting the
vascular The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away f ...
tissues in the root cortex, shielding the root from transpirational water loss, and, in many cases, adhering the plant to the substrate. The typical orchid root has a stele of comparatively small diameter. It is surrounded by a cortex which is further enveloped by a highly specialized exodermis, most of which at maturity do not contain protoplasm. A few cells, however, are living and allow the passage of water through them. The exodermis is surrounded by velamen, consisting of one to several layers of cells, which can develop root hair under proper environmental conditions. The velamen arises from the root tip by division of a special tissue. The dead cells of velamen diffuse light, thus giving it a grey appearance—except at the tips, where the chlorophyll become visible. Upon absorbing water, the dead cells become transparent, and the whole velamen tissue then appears green.


References

* Chomicki, G., L. P. R. Bidel, F. Ming, M. Coiro, X. Zhang, Y. Wang, Y. Baissac, C. Jay-Allemand, and S. S. Renner. 2015. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytologist 205(3): 1330–1341. Plant morphology {{Botany-stub