HOME
The Info List - Vanadium


--- Advertisement ---



Vanadium
Vanadium
is a chemical element with symbol V and atomic number 23. It is a hard, silvery grey, ductile, and malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) stabilizes the free metal somewhat against further oxidation. Andrés Manuel del Río
Andrés Manuel del Río
discovered compounds of vanadium in 1801 in Mexico
Mexico
by analyzing a new lead-bearing mineral he called "brown lead", and presumed its qualities were due to the presence of a new element, which he named erythronium (derived from Greek for "red") since, upon heating, most of the salts turned red. Four years later, however, he was (erroneously) convinced by other scientists that erythronium was identical to chromium. Chlorides of vanadium were generated in 1830 by Nils Gabriel Sefström who thereby proved that a new element was involved, which he named "vanadium" after the Scandinavian goddess of beauty and fertility, Vanadís
Vanadís
(Freyja). Both names were attributed to the wide range of colors found in vanadium compounds. Del Rio's lead mineral was later renamed vanadinite for its vanadium content. In 1867 Henry Enfield Roscoe
Henry Enfield Roscoe
obtained the pure element. Vanadium
Vanadium
occurs naturally in about 65 different minerals and in fossil fuel deposits. It is produced in China
China
and Russia
Russia
from steel smelter slag; other countries produce it either from the flue dust of heavy oil, or as a byproduct of uranium mining. It is mainly used to produce specialty steel alloys such as high-speed tool steels. The most important industrial vanadium compound, vanadium pentoxide, is used as a catalyst for the production of sulfuric acid. Large amounts of vanadium ions are found in a few organisms, possibly as a toxin. The oxide and some other salts of vanadium have moderate toxicity. Particularly in the ocean, vanadium is used by some life forms as an active center of enzymes, such as the vanadium bromoperoxidase of some ocean algae.

Contents

1 History 2 Characteristics

2.1 Isotopes

3 Chemistry

3.1 Oxyanions 3.2 Halide derivatives 3.3 Coordination compounds 3.4 Organometallic compounds

4 Occurrence

4.1 Universe 4.2 Earth's crust 4.3 Water

5 Production 6 Applications

6.1 Alloys 6.2 Other uses

6.2.1 Proposed

7 Biological role

7.1 Vanadoenzymes 7.2 Vanadium
Vanadium
accumulation in tunicates and ascidians 7.3 Fungi 7.4 Mammals 7.5 Research

8 Safety 9 See also 10 References 11 Further reading 12 External links

History[edit] Vanadium
Vanadium
was discovered by Andrés Manuel del Río, a Spanish-Mexican mineralogist, in 1801. Del Río extracted the element from a sample of Mexican "brown lead" ore, later named vanadinite. He found that its salts exhibit a wide variety of colors, and as a result he named the element panchromium (Greek: παγχρώμιο "all colors"). Later, Del Río renamed the element erythronium (Greek: ερυθρός "red") because most of the salts turned red upon heating. In 1805, the French chemist Hippolyte Victor Collet-Descotils, backed by del Río's friend Baron Alexander von Humboldt, incorrectly declared that del Río's new element was only an impure sample of chromium. Del Río accepted Collet-Descotils' statement and retracted his claim.[3] In 1831, the Swedish chemist Nils Gabriel Sefström rediscovered the element in a new oxide he found while working with iron ores. Later that same year, Friedrich Wöhler
Friedrich Wöhler
confirmed del Río's earlier work.[4] Sefström chose a name beginning with V, which had not been assigned to any element yet. He called the element vanadium after Old Norse Vanadís
Vanadís
(another name for the Norse Vanr goddess Freyja, whose attributes include beauty and fertility), because of the many beautifully colored chemical compounds it produces.[4] In 1831, the geologist George William Featherstonhaugh
George William Featherstonhaugh
suggested that vanadium should be renamed "rionium" after del Río, but this suggestion was not followed.[5]

The Model T
Model T
made use of vanadium steel in its chassis.

The isolation of vanadium metal proved difficult. In 1831, Berzelius reported the production of the metal, but Henry Enfield Roscoe
Henry Enfield Roscoe
showed that Berzelius had in fact produced the nitride, vanadium nitride (VN). Roscoe eventually produced the metal in 1867 by reduction of vanadium(II) chloride, VCl2, with hydrogen.[6] In 1927, pure vanadium was produced by reducing vanadium pentoxide with calcium.[7] The first large-scale industrial use of vanadium was in the steel alloy chassis of the Ford Model T, inspired by French race cars. Vanadium
Vanadium
steel allowed for reduced weight while simultaneously increasing tensile strength (ca. 1905).[8] German chemist Martin Henze discovered vanadium in the blood cells (or coelomic cells) of Ascidiacea
Ascidiacea
(sea squirts) in 1911.[9][10] Characteristics[edit]

High-purity (99.95%) vanadium cuboids, ebeam remelted and macro-etched

Vanadium
Vanadium
is a medium-hard, ductile, steel-blue metal. Some sources describe vanadium as "soft", perhaps because it is ductile, malleable and not brittle.[11][12] Vanadium
Vanadium
is harder than most metals and steels (see Hardnesses of the elements (data page) and iron). It has good resistance to corrosion and it is stable against alkalis and sulfuric and hydrochloric acids.[13] It is oxidized in air at about 933 K (660 °C, 1220 °F), although an oxide passivation layer forms even at room temperature. Isotopes[edit] Main article: Isotopes of vanadium Naturally occurring vanadium is composed of one stable isotope, 51V, and one radioactive isotope, 50V. The latter has a half-life of 1.5×1017 years and a natural abundance of 0.25%. 51V has a nuclear spin of ​7⁄2, which is useful for NMR spectroscopy.[14] Twenty-four artificial radioisotopes have been characterized, ranging in mass number from 40 to 65. The most stable of these isotopes are 49V with a half-life of 330 days, and 48V with a half-life of 16.0 days. The remaining radioactive isotopes have half-lives shorter than an hour, most below 10 seconds. At least four isotopes have metastable excited states.[14] Electron capture
Electron capture
is the main decay mode for isotopes lighter than 51V. For the heavier ones, the most common mode is beta decay. The electron capture reactions lead to the formation of element 22 (titanium) isotopes, while beta decay leads to element 24 (chromium) isotopes. Chemistry[edit] See also: Category: Vanadium
Vanadium
compounds.

From left: [V(H2O)6]2+ (lilac), [V(H2O)6]3+ (green), [VO(H2O)5]2+ (blue) and [VO(H2O)5]3+ (yellow).

The chemistry of vanadium is noteworthy for the accessibility of the four adjacent oxidation states 2–5. In aqueous solution, vanadium forms metal aquo complexes of which the colours are lilac [V(H2O)6]2+, green [V(H2O)6]3+, blue [VO(H2O)5]2+, yellow VO3−. Vanadium(II) compounds are reducing agents, and vanadium(V) compounds are oxidizing agents. Vanadium(IV) compounds often exist as vanadyl derivatives, which contain the VO2+ center.[13] Ammonium vanadate(V) (NH4VO3) can be successively reduced with elemental zinc to obtain the different colors of vanadium in these four oxidation states. Lower oxidation states occur in compounds such as V(CO)6, [V(CO) 6]− and substituted derivatives.[13] The most commercially important compound is vanadium pentoxide. It is used as a catalyst for the production of sulfuric acid.[13] This compound oxidizes sulfur dioxide (SO 2) to the trioxide (SO 3). In this redox reaction, sulfur is oxidized from +4 to +6, and vanadium is reduced from +5 to +4:

V2O5 + SO2 → 2 VO2 + SO3[citation needed]

The catalyst is regenerated by oxidation with air:

2 VO2 + O2 → V2O5

Similar oxidations are used in the production of maleic anhydride, phthalic anhydride, and several other bulk organic compounds.[15] The vanadium redox battery utilizes all four oxidation states; one electrode uses the +5/+4 couple and the other uses the +3/+2 couple. Conversion of these oxidation states is illustrated by the reduction of a strongly acidic solution of a vanadium(V) compound with zinc dust or amalgam. The initial yellow color characteristic of the pervanadyl ion [VO2(H2O)4]+ is replaced by the blue color of [VO(H2O)5]2+, followed by the green color of [V(H2O)6]3+ and then the violet color of [V(H2O)6]2+.[13] Oxyanions[edit]

The decavanadate structure

In aqueous solution, vanadium(V) forms an extensive family of oxyanions. The interrelationships in this family are described by the predominance diagram, which shows at least 11 species, depending on pH and concentration.[16] The tetrahedral orthovanadate ion, VO3− 4, is the principal species present at pH 12-14. Similar in size and charge to phosphorus(V), vanadium(V) also parallels its chemistry and crystallography. Orthovanadate VO3− 4 is used in protein crystallography[17] to study the biochemistry of phosphate.[18] The tetrathiovanadate [VS4]3− is analogous to the orthovanadate ion.[19] At lower pH's, the monomer [HVO4]2− and dimer [V2O7]− are formed, with the monomer predominant at vanadium concentration of less than c. 10−2M (pV > 2, where pV is equal to the minus value of the logarithm of the total vanadium concentration/M). The formation of the divanadate ion is analogous to the formation of the dichromate ion. As the pH is reduced, further protonation and condensation to polyvanadates occur: at pH 4-6 [H2VO4]− is predominant at pV greater than ca. 4, while at higher concentrations trimers and tetramers are formed. Between pH 2-4 decavanadate predominates, its formation from orthovanadate is represented by this condensation reaction:

10 [VO4]3− + 24 H+ → [V10O28]6− + 12 H2O

In decavanadate, each V(V) center is surrounded by six oxide ligands.[13] Vanadic acid, H3VO4 exists only at very low concentrations because protonation of the tetrahedral species [H2VO4]− results in the preferential formation of the octahedral [VO2(H2O)4]+ species. In strongly acidic solutions, pH<2. [VO2(H2O)4]+ is the predominant species, while the oxide V2O5 precipitates from solution at high concentrations. The oxide is formally the inorganic anhydride of vanadic acid. The structures of many vanadate compounds have been determined by X-ray crystallography.

The Pourbaix diagram
Pourbaix diagram
for vanadium in water

The Pourbaix diagram
Pourbaix diagram
for vanadium in water, which shows the redox potentials between various vanadium species in different oxidation states, is also complex.[20] Vanadium(V) forms various peroxo complexes, most notably in the active site of the vanadium-containing bromoperoxidase enzymes. The species VO(O)2(H2O)4+ is stable in acidic solutions. In alkaline solutions, species with 2, 3 and 4 peroxide groups are known; the last forms violet salts with the formula M3V(O2)4 nH2O (M = Li, Na, etc.), in which the vanadium has an 8-coordinate dodecahedral structure.[21][22] Halide derivatives[edit] Twelve binary halides, compounds with the formula VXn (n=2..5), are known. VI4, VCl5, VBr5, and VI5 do not exist or are extremely unstable. In combination with other reagents, VCl4 is used as a catalyst for polymerization of dienes. Like all binary halides, those of vanadium are Lewis acidic, especially those of V(IV) and V(V). Many of the halides form octahedral complexes with the formula VXnL6−n (X = halide; L = other ligand). Many vanadium oxyhalides (formula VOmXn) are known.[23] The oxytrichloride and oxytrifluoride (VOCl3 and VOF3) are the most widely studied. Akin to POCl3, they are volatile, adopt tetrahedral structures in the gas phase, and are Lewis acidic. Coordination compounds[edit]

A ball-and-stick model of VO5(C5H7)2

Complexes of vanadium(II) and (III) are relatively exchange inert and reducing. Those of V(IV) and V(V) are oxidants. Vanadium
Vanadium
ion is rather large and some complexes achieve coordination numbers greater than 6, as is the case in [V(CN)7]4−. Oxovanadium(V) also forms 7 coordinate coordination complexes with tetradentate ligands and peroxides and these complexes are used for oxidative brominations and thioether oxidations. The coordination chemistry of V4+ is dominated by the vanadyl center, VO2+, which binds four other ligands strongly and one weakly (the one trans to the vanadyl center). An example is vanadyl acetylacetonate (V(O)(O2C5H7)2). In this complex, the vanadium is 5-coordinate, square pyramidal, meaning that a sixth ligand, such as pyridine, may be attached, though the association constant of this process is small. Many 5-coordinate vanadyl complexes have a trigonal bypyramidal geometry, such as VOCl2(NMe3)2.[24] The coordination chemistry of V5+ is dominated by the relatively stable dioxovanadium coordination complexes which are often formed by aerial oxidation of the vanadium(IV) precursors indicating the stability of the +5 oxidation state and ease of interconversion between the +4 and +5 states. Organometallic compounds[edit] Main article: Organovanadium chemistry Organometallic chemistry of vanadium is well developed, although it has mainly only academic significance. Vanadocene dichloride
Vanadocene dichloride
is a versatile starting reagent and even finds some applications in organic chemistry.[25] Vanadium
Vanadium
carbonyl, V(CO)6, is a rare example of a paramagnetic metal carbonyl. Reduction yields V(CO)− 6 (isoelectronic with Cr(CO)6), which may be further reduced with sodium in liquid ammonia to yield V(CO)3− 5 (isoelectronic with Fe(CO)5).[26][27] Occurrence[edit]

Vanadinite

Universe[edit] The cosmic abundance of vanadium in the universe is 0.0001%, making the element nearly as common as copper or zinc.[28] Vanadium
Vanadium
is detected spectroscopically in light from the Sun
Sun
and sometimes in the light from other stars.[29] Earth's crust[edit] See also: Category: Vanadate
Vanadate
minerals. Vanadium
Vanadium
is the 20th most abundant element in the earth's crust;[30] metallic vanadium is rare in nature (known as the mineral vanadium, native vanadium),[31][32] but vanadium compounds occur naturally in about 65 different minerals. Economically significant examples include patrónite (VS4),[33] vanadinite (Pb5(VO4)3Cl), and carnotite (K2(UO2)2(VO4)2·3H2O). Much of the world's vanadium production is sourced from vanadium-bearing magnetite found in ultramafic gabbro bodies. Vanadium
Vanadium
is mined mostly in South Africa, north-western China, and eastern Russia. In 2013 these three countries mined more than 97% of the 79,000 tonnes of produced vanadium.[34] Vanadium
Vanadium
is also present in bauxite and in deposits of crude oil, coal, oil shale and tar sands. In crude oil, concentrations up to 1200 ppm have been reported. When such oil products are burned, traces of vanadium may cause corrosion in engines and boilers.[35] An estimated 110,000 tonnes of vanadium per year are released into the atmosphere by burning fossil fuels.[36] Water[edit] The vanadyl ion is abundant in seawater, having an average concentration of 30 nM.[28] Some mineral water springs also contain the ion in high concentrations. For example, springs near Mount Fuji contain as much as 54 μg per liter.[28] Production[edit]

Ferrovanadium chunks

Vacuum sublimed vanadium dendritic crystals (99.9%)

Crystal-bar vanadium, showing different textures and surface oxidation; 3N5-pure cube for comparison

Most vanadium is used as a steel alloy called ferrovanadium. Ferrovanadium is produced directly by reducing a mixture of vanadium oxide, iron oxides and iron in an electric furnace. The vanadium ends up in pig iron produced from vanadium-bearing magnetite. Depending on the ore used, the slag contains up to 25% of vanadium.[37] Vanadium
Vanadium
metal is obtained by a multistep process that begins with the roasting of crushed ore with NaCl or Na2CO3 at about 850 °C to give sodium metavanadate (NaVO3). An aqueous extract of this solid is acidified to give "red cake", a polyvanadate salt, which is reduced with calcium metal. As an alternative for small-scale production, vanadium pentoxide is reduced with hydrogen or magnesium. Many other methods are also in use, in all of which vanadium is produced as a byproduct of other processes.[37] Purification of vanadium is possible by the crystal bar process developed by Anton Eduard van Arkel and Jan Hendrik de Boer in 1925. It involves the formation of the metal iodide, in this example vanadium(III) iodide, and the subsequent decomposition to yield pure metal:[38]

2 V + 3 I2 ⇌ 2 VI3

Applications[edit]

Tool
Tool
made from vanadium steel

Alloys[edit] Approximately 85% of vanadium produced is used as ferrovanadium or as a steel additive.[37] The considerable increase of strength in steel containing small amounts of vanadium was discovered in the early 20th century. Vanadium
Vanadium
forms stable nitrides and carbides, resulting in a significant increase in the strength of steel.[39] From that time on, vanadium steel was used for applications in axles, bicycle frames, crankshafts, gears, and other critical components. There are two groups of vanadium steel alloys. Vanadium
Vanadium
high-carbon steel alloys contain 0.15% to 0.25% vanadium, and high-speed tool steels (HSS) have a vanadium content of 1% to 5%. For high-speed tool steels, a hardness above HRC 60 can be achieved. HSS steel is used in surgical instruments and tools.[40] Powder-metallurgic alloys contain up to 18% percent vanadium. The high content of vanadium carbides in those alloys increases wear resistance significantly. One application for those alloys is tools and knives.[41] Vanadium
Vanadium
stabilizes the beta form of titanium and increases the strength and temperature stability of titanium. Mixed with aluminium in titanium alloys, it is used in jet engines, high-speed airframes and dental implants. The most common alloy for seamless tubing is Titanium
Titanium
3/2.5 containing 2.5% vanadium, the titanium alloy of choice in the aerospace, defense and bicycle industries.[42] Another common alloy, primarily produced in sheets, is Titanium
Titanium
6AL-4V, a titanium alloy with 6% aluminium and 4% vanadium.[43] Several vanadium alloys show superconducting behavior. The first A15 phase superconductor was a vanadium compound, V3Si, which was discovered in 1952.[44] Vanadium-gallium
Vanadium-gallium
tape is used in superconducting magnets (17.5 teslas or 175,000 gauss). The structure of the superconducting A15 phase
A15 phase
of V3Ga is similar to that of the more common Nb3Sn and Nb3Ti.[45] It has been proposed that a small amount, 40 to 270 ppm, of vanadium in Wootz steel
Wootz steel
and Damascus steel
Damascus steel
significantly improved the strength of the product, though the source of the vanadium is unclear.[46] Other uses[edit]

Vanadium(V) oxide
Vanadium(V) oxide
is a catalyst in the contact process for producing sulfuric acid

Vanadium
Vanadium
foil is used in cladding titanium to steel because it is compatible with both iron and titanium.[47] The moderate thermal neutron-capture cross-section and the short half-life of the isotopes produced by neutron capture makes vanadium a suitable material for the inner structure of a fusion reactor.[48][49] The most common oxide of vanadium, vanadium pentoxide V2O5, is used as a catalyst in manufacturing sulfuric acid by the contact process[50] and as an oxidizer in maleic anhydride production.[51] Vanadium pentoxide is used in ceramics.[52] Vanadium
Vanadium
is an important component of mixed metal oxide catalysts used in the oxidation of propane and propylene to acrolein, acrylic acid or the ammoxidation of propylene to acrylonitrile.[53][54][55] In service, the oxidation state of vanadium changes dynamically and reversibly with the oxygen and the steam content of the reacting feed mixture.[56][57] Another oxide of vanadium, vanadium dioxide VO2, is used in the production of glass coatings, which blocks infrared radiation (and not visible light) at a specific temperature.[58] Vanadium
Vanadium
oxide can be used to induce color centers in corundum to create simulated alexandrite jewelry, although alexandrite in nature is a chrysoberyl.[59] The Vanadium
Vanadium
redox battery, a type of flow battery, is an electrochemical cell consisting of aqueous vanadium ions in different oxidation states.[60][61] Batteries of the type were first proposed in the 1930s and developed commercially from the 1980s onwards. Cells use +5 and +2 formal oxidization state ions, and (as of 2016) are used commercially for small scale (c. 0.1 - 10 MW, 0.1 - 100 GJ) grid energy storage.[citation needed] Vanadate
Vanadate
can be used for protecting steel against rust and corrosion by conversion coating.[62] Proposed[edit] Lithium
Lithium
vanadium oxide has been proposed for use as a high energy density anode for lithium ion batteries, at 745 Wh/L when paired with a lithium cobalt oxide cathode.[63] Vanadium
Vanadium
phosphates have been proposed as the cathode in the Lithium
Lithium
Vanadium
Vanadium
Phosphate Battery, another type of lithium ion battery. Biological role[edit] Health benefits of vanadium and its potential as an anticancer agent have been reviewed.[64] Vanadium
Vanadium
is more important in marine environments than terrestrial.[65]

Active site of the enzyme vanadium bromoperoxidase, which produces the preponderance of naturally-occurring organobromine compounds.

Tunicates such as this bluebell tunicate contain vanadium as vanabin.

Amanita muscaria
Amanita muscaria
contains amavadin.

Vanadoenzymes[edit] A number of species of marine algae produce vanadium bromoperoxidase as well as the closely related chloroperoxidase (which may use a heme or vanadium cofactor) and iodoperoxidases. The bromoperoxidase produces an estimated 1–2 million tons of bromoform and 56,000 tons of bromomethane annually.[66] Most naturally occurring organobromine compounds are produced by this enzyme,[67] catalyzing the following reaction (R-H is hydrocarbon substrate):

R-H + Br− + H2O2 → R-Br + H2O + OH−

A vanadium nitrogenase is used by some nitrogen-fixing micro-organisms, such as Azotobacter. In this role, vanadium replaces more common molybdenum or iron, and gives the nitrogenase slightly different properties.[68] Vanadium
Vanadium
accumulation in tunicates and ascidians[edit] Vanadium
Vanadium
is essential to ascidians and tunicates, where it is stored in the highly acidified vacuoles of certain blood cell types, designated "vanadocytes". Vanabins (vanadium binding proteins) have been identified in the cytoplasm of such cells. The concentration of vanadium in the blood of ascidians is as much as ten million times higher[specify][69][70] than the surrounding seawater, which normally contains 1 to 2 µg/l.[71][72] The function of this vanadium concentration system and these vanadium-bearing proteins is still unknown, but the vanadocytes are later deposited just under the outer surface of the tunic where they may deter predation.[73] Fungi[edit] Amanita muscaria
Amanita muscaria
and related species of macrofungi accumulate vanadium (up to 500 mg/kg in dry weight). Vanadium
Vanadium
is present in the coordination complex amavadin[74] in fungal fruit-bodies. The biological importance of the accumulation is unknown.[75][76] Toxic or peroxidase enzyme functions have been suggested. Mammals[edit] Deficiencies in vanadium result in reduced growth in rats.[77] The U.S. Institute of Medicine has not confirmed that vanadium is an essential nutrient for humans, so neither a Recommended Dietary Intake nor an Adequate Intake have been established. Dietary intake is estimated at 6 to 18 µg/day, with less than 5% absorbed. The Tolerable Upper Intake Level (UL) of dietary vanadium, beyond which adverse effects may occur, is set at 1.8 mg/day.[78] Research[edit] Vanadyl
Vanadyl
sulfate as a dietary supplement has been researched as a means of increasing insulin sensitivity or otherwise improving glycemic control in people who are diabetic. Some of the trials had significant treatment effects, but were deemed as being of poor study quality. The amounts of vanadium used in these trials (30 to 150 mg) far exceeded the safe upper limit.[79][80] The conclusion of the systemic review was "There is no rigorous evidence that oral vanadium supplementation improves glycaemic control in type 2 diabetes. The routine use of vanadium for this purpose cannot be recommended."[79] In astrobiology, it has been suggested that discrete vanadium accumulations on Mars
Mars
could be a potential microbial biosignature, when used in conjunction with Raman spectroscopy
Raman spectroscopy
and morphology.[81][82] Safety[edit] All vanadium compounds should be considered toxic. Tetravalent VOSO4 has been reported to be at least 5 times more toxic than trivalent V2O3.[83] The Occupational Safety and Health Administration
Occupational Safety and Health Administration
(OSHA) has set an exposure limit of 0.05 mg/m3 for vanadium pentoxide dust and 0.1 mg/m3 for vanadium pentoxide fumes in workplace air for an 8-hour workday, 40-hour work week.[84] The National Institute for Occupational Safety and Health (NIOSH) has recommended that 35 mg/m3 of vanadium be considered immediately dangerous to life and health, that is, likely to cause permanent health problems or death.[84] Vanadium
Vanadium
compounds are poorly absorbed through the gastrointestinal system. Inhalation of vanadium and vanadium compounds results primarily in adverse effects on the respiratory system.[85][86][87] Quantitative data are, however, insufficient to derive a subchronic or chronic inhalation reference dose. Other effects have been reported after oral or inhalation exposures on blood parameters,[88][89] liver,[90] neurological development,[91] and other organs[92] in rats. There is little evidence that vanadium or vanadium compounds are reproductive toxins or teratogens. Vanadium pentoxide
Vanadium pentoxide
was reported to be carcinogenic in male rats and in male and female mice by inhalation in an NTP study,[86] although the interpretation of the results has recently been disputed.[93] The carcinogenicity of vanadium has not been determined by the United States Environmental Protection Agency.[94] Vanadium
Vanadium
traces in diesel fuels are the main fuel component in high temperature corrosion. During combustion, vanadium oxidizes and reacts with sodium and sulfur, yielding vanadate compounds with melting points as low as 530 °C, which attack the passivation layer on steel and render it susceptible to corrosion. The solid vanadium compounds also abrade engine components.[95][96] See also[edit]

Green Giant mine Grid energy storage Flow battery Vanadium
Vanadium
carbide Vanadium
Vanadium
redox battery Vanadium(V) oxide Vanadium
Vanadium
tetrachloride

References[edit]

^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.  ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.  ^ Cintas, Pedro (2004). "The Road to Chemical Names and Eponyms: Discovery, Priority, and Credit". Angewandte Chemie International Edition. 43 (44): 5888–94. doi:10.1002/anie.200330074. PMID 15376297.  ^ a b Sefström, N. G. (1831). "Ueber das Vanadin, ein neues Metall, gefunden im Stangeneisen von Eckersholm, einer Eisenhütte, die ihr Erz von Taberg in Småland bezieht". Annalen der Physik und Chemie. 97: 43–49. Bibcode:1831AnP....97...43S. doi:10.1002/andp.18310970103.  ^ Featherstonhaugh, George William (1831). "New Metal, provisionally called Vanadium". The Monthly American Journal of Geology and Natural Science: 69.  ^ Roscoe, Henry E. (1869–1870). "Researches on Vanadium. Part II". Proceedings of the Royal Society of London. 18 (114–122): 37–42. doi:10.1098/rspl.1869.0012.  ^ Marden, J. W.; Rich, M. N. (1927). "Vanadium". Industrial and Engineering Chemistry. 19 (7): 786–788. doi:10.1021/ie50211a012.  ^ Betz, Frederick (2003). Managing Technological Innovation: Competitive Advantage from Change. Wiley-IEEE. pp. 158–159. ISBN 0-471-22563-0.  ^ Henze, M. (1911). "Untersuchungen fiber das Blut der Ascidien. I. Mitteilung". Z. Physiol. Chem. 72 (5–6): 494–50. doi:10.1515/bchm2.1911.72.5-6.494.  ^ Michibata, H.; Uyama, T.; Ueki, T.; Kanamori, K. (2002). "Vanadocytes, cells hold the key to resolving the highly selective accumulation and reduction of vanadium in ascidians". Microscopy Research and Technique. 56 (6): 421–434. doi:10.1002/jemt.10042. PMID 11921344.  ^ George F. Vander Voort (1984). Metallography, principles and practice. ASM International. pp. 137–. ISBN 978-0-87170-672-0. Retrieved 17 September 2011.  ^ François Cardarelli (2008). Materials handbook: a concise desktop reference. Springer. pp. 338–. ISBN 978-1-84628-668-1. Retrieved 17 September 2011.  ^ a b c d e f Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Vanadium". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1071–1075. ISBN 3-11-007511-3.  ^ a b Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.  ^ Günter Bauer, Volker Güther, Hans Hess, Andreas Otto, Oskar Roidl, Heinz Roller, Siegfried Sattelberger " Vanadium
Vanadium
and Vanadium
Vanadium
Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a27_367 ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 984. ISBN 0-08-037941-9.  ^ Sinning, Irmgard; Hol, Wim G. J. (2004). "The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes". FEBS Letters. 577 (3): 315–21. doi:10.1016/j.febslet.2004.10.022. PMID 15556602.  ^ Seargeant, Lorne E.; Stinson, Robert A. (1979). "Inhibition of human alkaline phosphatases by vanadate". Biochemical Journal. 181 (1): 247–50. PMC 1161148 . PMID 486156.  ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 988. ISBN 0-08-037941-9.  ^ Al-Kharafi, F. M.; Badawy, W. A. (1997). "Electrochemical behavior of vanadium in aqueous solutions of different pH". Electrochimica Acta. 42 (4): 579–586. doi:10.1016/S0013-4686(96)00202-2.  ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9. , p994. ^ Strukul, Giorgio (1992). Catalytic oxidations with hydrogen peroxide as oxidant. Springer. p. 128. ISBN 0-7923-1771-8.  ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 993. ISBN 0-08-037941-9.  ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.  ^ Wilkinson, G. & Birmingham, J.G. (1954). "Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta". Journal of the American Chemical Society. 76 (17): 4281–4284. doi:10.1021/ja01646a008.  ^ Bellard, S.; Rubinson, K. A.; Sheldrick, G. M. (1979). "Crystal and molecular structure of vanadium hexacarbonyl". Acta Crystallographica. B35 (2): 271–274. doi:10.1107/S0567740879003332.  ^ Elschenbroich, C.; Salzer A. (1992). Organometallics : A Concise Introduction. Wiley-VCH. ISBN 3-527-28165-7.  ^ a b c Rehder, Dieter (2008). Bioinorganic Vanadium
Vanadium
Chemistry (1st ed.). Hamburg, Germany: John Wiley & Sons, Ltd. pp. 5 & 9–10. doi:10.1002/9780470994429. ISBN 9780470065099.  ^ Cowley, C. R.; Elste, G. H.; Urbanski, J. L. (1978). "Vanadium abundances in early A stars". Publications of the Astronomical Society of the Pacific. 90: 536. Bibcode:1978PASP...90..536C. doi:10.1086/130379.  ^ Proceedings. National Cotton Council of America. 1991.  ^ Ostrooumov, M., and Taran, Y., 2015. Discovery of Native Vanadium, a New Mineral
Mineral
from the Colima Volcano, State of Colima (Mexico). Revista de la Sociedad Española de Mineralogía 20, 109-110 ^ "Vanadium: Vanadium
Vanadium
mineral information and data". Mindat.org. Retrieved 2016-03-02.  ^ "mineralogical data about Patrónite". mindata.org. Retrieved 19 January 2009.  ^ Magyar, Michael J. " Mineral
Mineral
Commodity Summaries 2015: Vanadium" (PDF). United States Geological Survey. Retrieved 3 June 2015.  ^ Pearson, C. D.; Green J. B. (1993). " Vanadium
Vanadium
and nickel complexes in petroleum resid acid, base, and neutral fractions". Energy Fuels. 7 (3): 338–346. doi:10.1021/ef00039a001.  ^ Anke, Manfred (2004). " Vanadium
Vanadium
– An element both essential and toxic to plants, animals and humans?". Anal. Real Acad. Nac. Farm. 70: 961.  ^ a b c Moskalyk, R. R.; Alfantazi, A. M. (2003). "Processing of vanadium: a review". Minerals Engineering. 16 (9): 793–805. doi:10.1016/S0892-6875(03)00213-9.  ^ Carlson, O. N.; Owen, C. V. (1961). "Preparation of High-Purity Vanadium
Vanadium
Metals by the Iodide Refining Process". Journal of the Electrochemical Society. 108: 88. doi:10.1149/1.2428019.  ^ Chandler, Harry (1998). Metallurgy for the Non-metallurgist. ASM International. pp. 6–7. ISBN 978-0-87170-652-2.  ^ Davis, Joseph R. (1995). Tool
Tool
Materials: Tool
Tool
Materials. ASM International. ISBN 978-0-87170-545-7.  ^ Oleg D. Neikov; Stanislav Naboychenko; Irina Mourachova; Victor G. Gopienko; Irina V. Frishberg; Dina V. Lotsko (2009-02-24). Handbook of Non-Ferrous Metal Powders: Technologies and Applications. p. 490. ISBN 9780080559407. Retrieved 17 October 2013.  ^ "Technical Supplement: Titanium". Seven Cycles. Retrieved 1 November 2016.  ^ Peters, Manfred; Leyens, C. (2002). "Metastabile β-Legierungen". Titan und Titanlegierungen. Wiley-VCH. pp. 23–24. ISBN 978-3-527-30539-1.  ^ Hardy, George F.; Hulm, John K. (1953). "Superconducting Silicides and Germanides". Physical Review. 89 (4): 884–884. Bibcode:1953PhRv...89Q.884H. doi:10.1103/PhysRev.89.884.  ^ Markiewicz, W.; Mains, E.; Vankeuren, R.; Wilcox, R.; Rosner, C.; Inoue, H.; Hayashi, C.; Tachikawa, K. (1977). "A 17.5 Tesla superconducting concentric Nb3Sn and V3Ga magnet system". IEEE Transactions on Magnetics. 13 (1): 35–37. Bibcode:1977ITM....13...35M. doi:10.1109/TMAG.1977.1059431.  ^ Verhoeven, J. D.; Pendray, A. H.; Dauksch, W. E. (1998). "The key role of impurities in ancient damascus steel blades". Journal of the Minerals, Metals and Materials Society. 50 (9): 58–64. Bibcode:1998JOM....50i..58V. doi:10.1007/s11837-998-0419-y.  ^ Lositskii, N. T.; Grigor'ev A. A.; Khitrova, G. V. (1966). "Welding of chemical equipment made from two-layer sheet with titanium protective layer (review of foreign literature)". Chemical and Petroleum Engineering. 2 (12): 854–856. doi:10.1007/BF01146317.  ^ Matsui, H.; Fukumoto, K.; Smith, D. L.; Chung, Hee M.; Witzenburg, W. van; Votinov, S. N. (1996). "Status of vanadium alloys for fusion reactors". Journal of Nuclear Materials. 233–237 (1): 92–99. Bibcode:1996JNuM..233...92M. doi:10.1016/S0022-3115(96)00331-5.  ^ " Vanadium
Vanadium
Data Sheet" (PDF). ATI Wah Chang. Archived from the original (PDF) on 25 February 2009. Retrieved 16 January 2009.  ^ Eriksen, K. M.; Karydis, D. A.; Boghosian, S.; Fehrmann, R. (1995). "Deactivation and Compound Formation in Sulfuric-Acid Catalysts and Model Systems". Journal of Catalysis. 155 (1): 32–42. doi:10.1006/jcat.1995.1185.  ^ Abon, Michel; Volta, Jean-Claude (1997). " Vanadium
Vanadium
phosphorus oxides for n-butane oxidation to maleic anhydride". Applied Catalysis A: General. 157 (1–2): 173–193. doi:10.1016/S0926-860X(97)00016-1.  ^ Lide, David R. (2004). "vanadium". CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press. pp. 4–34. ISBN 978-0-8493-0485-9.  ^ Fierro, J. G. L., ed. (2006). Metal Oxides, Chemistry and Applications. CRC Press. pp. 415–455.  ^ Kinetic studies of propane oxidation on Mo and V based mixed oxide catalysts (PhD Thesis). Berlin: Technische Universität. 2011. hdl:11858/00-001M-0000-0012-3000-A. [page needed] ^ Amakawa, Kazuhiko; Kolen’ko, Yury V.; Villa, Alberto; Schuster, Manfred E/; Csepei, Lénárd-István; Weinberg, Gisela; Wrabetz, Sabine; d’Alnoncourt, Raoul Naumann; Girgsdies, Frank; Prati, Laura; Schlögl, Robert; Trunschke, Annette. "Multifunctionality of Crystalline MoV(TeNb) M1 Oxide
Oxide
Catalysts in Selective Oxidation
Oxidation
of Propane and Benzyl Alcohol". ACS Catalysis. 3 (6): 1103–1113. doi:10.1021/cs400010q. hdl:11858/00-001M-0000-000E-FA39-1.  ^ Hävecker, Michael; Wrabetz, Sabine; Kröhnert, Jutta; Csepei, Lenard-Istvan; Naumann d’Alnoncourt, Raoul; Kolen’ko, Yury V.; Girgsdies, Frank; Schlögl, Robert; Trunschke, Annette (January 2012). "Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid". Journal of Catalysis. 285 (1): 48–60. doi:10.1016/j.jcat.2011.09.012. hdl:11858/00-001M-0000-0012-1BEB-F.  ^ Naumann d’Alnoncourt, Raoul; Csepei, Lénárd-István; Hävecker, Michael; Girgsdies, Frank; Schuster, Manfred E.; Schlögl, Robert; Trunschke, Annette (March 2014). "The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts". Journal of Catalysis. 311: 369–385. doi:10.1016/j.jcat.2013.12.008. hdl:11858/00-001M-0000-0014-F434-5.  ^ Manning, Troy D.; Parkin, Ivan P.; Clark, Robin J. H.; Sheel, David; Pemble, Martyn E.; Vernadou, Dimitra (2002). "Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides". Journal of Materials Chemistry. 12 (10): 2936–2939. doi:10.1039/b205427m.  ^ White, Willam B.; Roy, Rustum; McKay, Chrichton (1962). "The Alexandrite
Alexandrite
Effect: And Optical Study" (PDF). American Mineralogist. 52: 867–871.  ^ Joerissen, Ludwig; Garche, Juergen; Fabjan, Ch.; Tomazic G. (2004). "Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems". Journal of Power Sources. 127 (1–2): 98–104. Bibcode:2004JPS...127...98J. doi:10.1016/j.jpowsour.2003.09.066.  ^ Rychcik, M.; Skyllas-Kazacos, M. (1988). "Characteristics of a new all-vanadium redox flow battery". Journal of Power Sources. 22 (1): 59–67. Bibcode:1988JPS....22...59R. doi:10.1016/0378-7753(88)80005-3. ISSN 0378-7753.  ^ Guan, H.; Buchheit R. G. (2004). " Corrosion
Corrosion
Protection of Aluminum Alloy
Alloy
2024-T3 by Vanadate
Vanadate
Conversion Coatings". Corrosion. 60 (3): 284–296. doi:10.5006/1.3287733.  ^ Kariatsumari, Koji (February 2008). "Li-Ion Rechargeable Batteries Made Safer". Nikkei Business Publications, Inc. Archived from the original on 12 September 2011. Retrieved 10 December 2008.  ^ Crans, Debbie C.; Yang, Liling; Haase, Allison; Yang, Xiaogai (2018). "Chapter 9. Health Benefits of Vanadium
Vanadium
and Its Potential as an Anticancer Agent". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. Metallo-Drugs: Development and Action of Anticancer Agents. 18. Berlin: de Gruyter GmbH. pp. 251–279. doi:10.1515/9783110470734-015.  ^ Sigel, Astrid; Sigel, Helmut, eds. (1995). Vanadium
Vanadium
and Its Role in Life. Metal Ions
Ions
in Biological Systems. 31. CRC. ISBN 0-8247-9383-8.  ^ Gribble, Gordon W. (1999). "The diversity of naturally occurring organobromine compounds". Chemical Society Reviews. 28: 335–346. doi:10.1039/a900201d.  ^ Butler, Alison; Carter-Franklin, Jayme N. (2004). "The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products". Natural Product Reports. 21 (1): 180–8. doi:10.1039/b302337k. PMID 15039842.  ^ Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R. (1986). "The alternative nitrogenase of Azotobacter
Azotobacter
chroococcum is a vanadium enzyme". Nature. London. 322 (6077): 388–390. Bibcode:1986Natur.322..388R. doi:10.1038/322388a0.  ^ Smith, M. J. (1989). " Vanadium
Vanadium
biochemistry: The unknown role of vanadium-containing cells in ascidians (sea squirts)". Experientia. 45 (5): 452–7. doi:10.1007/BF01952027. PMID 2656286.  ^ MacAra, Ian G.; McLeod, G. C.; Kustin, Kenneth (1979). "Tunichromes and metal ion accumulation in tunicate blood cells". Comparative Biochemistry
Biochemistry
and Physiology B. 63 (3): 299–302. doi:10.1016/0305-0491(79)90252-9.  ^ Trefry, John H.; Metz, Simone (1989). "Role of hydrothermal precipitates in the geochemical cycling of vanadium". Nature. 342 (6249): 531–533. Bibcode:1989Natur.342..531T. doi:10.1038/342531a0.  ^ Weiss, H.; Guttman, M. A.; Korkisch, J.; Steffan, I. (1977). "Comparison of methods for the determination of vanadium in sea-water". Talanta. 24 (8): 509–11. doi:10.1016/0039-9140(77)80035-0. PMID 18962130.  ^ Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology (7th ed.). Cengage Learning. p. 947. ISBN 81-315-0104-3.  ^ Kneifel, Helmut; Bayer, Ernst (1997). "Determination of the Structure of the Vanadium
Vanadium
Compound, Amavadine, from Fly Agaric". Angewandte Chemie International Edition in English. 12 (6): 508. doi:10.1002/anie.197305081. ISSN 0570-0833.  ^ Falandysz, J.; Kunito, T.; Kubota, R.; Lipka, K.; Mazur, A.; Falandysz, Justyna J.; Tanabe, S. (2007). "Selected elements in fly agaric Amanita muscaria". Journal of Environmental Science and Health, Part A. 42 (11): 1615–1623. doi:10.1080/10934520701517853. PMID 17849303.  ^ Berry, Robert E.; Armstrong, Elaine M.; Beddoes, Roy L.; Collison, David; Ertok, Nigar; Helliwell, Madeleine; Garner, David (1999). "The Structural Characterization of Amavadin". Angewandte Chemie International Edition. 38 (6): 795–797. doi:10.1002/(SICI)1521-3773(19990315)38:6<795::AID-ANIE795>3.0.CO;2-7.  ^ Schwarz, Klaus; Milne, David B. (1971). "Growth Effects of Vanadium in the Rat". Science. 174 (4007): 426–428. Bibcode:1971Sci...174..426S. doi:10.1126/science.174.4007.426. JSTOR 1731776. PMID 5112000.  ^ Nickel. IN: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Copper. National Academy Press. 2001, PP. 532–543. ^ a b Smith DM, Pickering RM, Lewith GT (2008). "A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus". QJM. 101 (5): 351–8. doi:10.1093/qjmed/hcn003. PMID 18319296.  ^ " Vanadium
Vanadium
(vanadyl sulfate). Monograph". Altern Med Rev. 14 (2): 177–80. 2009. PMID 19594227.  ^ Lynch, Brendan M. (21 September 2017). "Hope to discover sure signs of life on Mars? New research says look for the element vanadium". PhysOrg. Retrieved 2017-10-14.  ^ Marshall Craig P., Marshall Alison Olcott, Aitken Jade B., Lai Barry, Vogt Stefan, Breuer Pierre, Steemans Philippe, and Lay Peter A. (June 2017). "Imaging of Vanadium
Vanadium
in Microfossils: A New Potential Biosignature". Astrobiology. CS1 maint: Multiple names: authors list (link) ^ Roschin, A. V. (1967). "Toxicology of vanadium compounds used in modern industry". Gig Sanit. (Water Res.). 32 (6): 26–32. PMID 5605589.  ^ a b "Occupational Safety and Health Guidelines for Vanadium Pentoxide". Occupational Safety and Health Administration. Archived from the original on 6 January 2009. Retrieved 29 January 2009.  ^ Sax, N. I. (1984). Dangerous Properties of Industrial Materials (6th ed.). Van Nostrand Reinhold Company. pp. 2717–2720.  ^ a b Ress, N. B.; et al. (2003). "Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice". Toxicological Sciences. 74 (2): 287–296. doi:10.1093/toxsci/kfg136. PMID 12773761.  ^ Jörg M. Wörle-Knirsch; Katrin Kern; Carsten Schleh; Christel Adelhelm; Claus Feldmann & Harald F. Krug (2007). "Nanoparticulate Vanadium
Vanadium
Oxide
Oxide
Potentiated Vanadium
Vanadium
Toxicity in Human Lung Cells". Environ. Sci. Technol. 41 (1): 331–336. Bibcode:2007EnST...41..331W. doi:10.1021/es061140x. PMID 17265967.  ^ Ścibior, A.; Zaporowska, H.; Ostrowski, J. (2006). "Selected haematological and biochemical parameters of blood in rats after subchronic administration of vanadium and/or magnesium in drinking water". Archives of Environmental Contamination and Toxicology. 51 (2): 287–295. doi:10.1007/s00244-005-0126-4. PMID 16783625.  ^ Gonzalez-Villalva, A.; et al. (2006). "Thrombocytosis induced in mice after subacute and subchronic V2O5 inhalation". Toxicology and Industrial Health. 22 (3): 113–116. doi:10.1191/0748233706th250oa. PMID 16716040.  ^ Kobayashi, Kazuo; Himeno, Seiichiro; Satoh, Masahiko; Kuroda, Junji; Shibata, Nobuo; Seko, Yoshiyuki; Hasegawa, Tatsuya (2006). "Pentavalent vanadium induces hepatic metallothionein through interleukin-6-dependent and -independent mechanisms". Toxicology. 228 (2–3): 162–170. doi:10.1016/j.tox.2006.08.022. PMID 16987576.  ^ Soazo, Marina; Garcia, Graciela Beatriz (2007). " Vanadium
Vanadium
exposure through lactation produces behavioral alterations and CNS myelin deficit in neonatal rats". Neurotoxicology and Teratology. 29 (4): 503–510. doi:10.1016/j.ntt.2007.03.001. PMID 17493788.  ^ Barceloux, Donald G.; Barceloux, Donald (1999). "Vanadium". Clinical Toxicology. 37 (2): 265–278. doi:10.1081/CLT-100102425. PMID 10382561.  ^ Duffus, J. H. (2007). "Carcinogenicity classification of vanadium pentoxide and inorganic vanadium compounds, the NTP study of carcinogenicity of inhaled vanadium pentoxide, and vanadium chemistry". Regulatory Toxicology and Pharmacology. 47 (1): 110–114. doi:10.1016/j.yrtph.2006.08.006. PMID 17030368.  ^ Opreskos, Dennis M. (1991). "Toxicity Summary for Vanadium". Oak Ridge National Laboratory. Retrieved 8 November 2008.  ^ Woodyard, Doug (2009-08-18). Pounder's Marine Diesel Engines and Gas Turbines. p. 92. ISBN 9780080943619.  ^ Totten, George E.; Westbrook, Steven R.; Shah, Rajesh J. (2003-06-01). Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing. p. 152. ISBN 9780803120969. 

Further reading[edit]

Slebodnick, Carla; et al. (1999). "Modeling the Biological Chemistry of Vanadium: Structural and Reactivity Studies Elucidating Biological Function". In Hill, Hugh A.O.; et al. Metal sites in proteins and models: phosphatases, Lewis acids, and vanadium. Springer. ISBN 978-3-540-65553-4. 

External links[edit]

Wikimedia Commons has media related to Vanadium.

Look up vanadium in Wiktionary, the free dictionary.

Videos

Vanadium
Vanadium
at The Periodic Table of Videos
The Periodic Table of Videos
(University of Nottingham)

Research papers

National Instrument Vanadium
Vanadium
Technical Report Vanadium
Vanadium
recovery methods ATSDR – ToxFAQs: Vanadium Vanadium
Vanadium
concentration in seawater and estuary environments is around 1.5-3.3 ug/kg [1]. Vanadium
Vanadium
speciation and cycling in coastal waters [2] Ocean anoxia and the concentrations of Molybdenum
Molybdenum
and Vanadium
Vanadium
in seawater [3]

v t e

Periodic table
Periodic table
(Large cells)

1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 H

He

2 Li Be

B C N O F Ne

3 Na Mg

Al Si P S Cl Ar

4 K Ca Sc

Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

5 Rb Sr Y

Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

Alkali metal Alkaline earth metal Lan­thanide Actinide Transition metal Post-​transition metal Metalloid Polyatomic nonmetal Diatomic nonmetal Noble gas Unknown chemical properties

v t e

Vanadium
Vanadium
compounds

Vanadium(0)

V(CO)6

Vanadium(II)

VBr2 VCl2 VO VS

Vanadium(III)

VBr3 VCl3 VF3 VI3 VN V2O3 V2(SO4)3 V2S3

Vanadium(IV)

VC VO2 VOSO4 VS2 VCl4 VF4

Organovanadium(IV) compounds

VO(C5H7O2)2

Vanadium(V)

V2O5 VOCl3 VOF3 VF5 V2S5 VO(ClO4)3

Authority control

LCCN: sh85142005 GND: 4187375-0 BNF: cb122626454 (d

.