Valley of stability
   HOME

TheInfoList



OR:

In
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies t ...
, the valley of stability (also called the belt of stability, nuclear valley, energy valley, or beta stability valley) is a characterization of the stability of
nuclide A nuclide (or nucleide, from atomic nucleus, nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was co ...
s to radioactivity based on their binding energy. Nuclides are composed of
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most
stable nuclei Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. The ...
. The line of stable nuclides down the center of the valley of stability is known as the
line of beta stability Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to doub ...
. The sides of the valley correspond to increasing instability to
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
or β+). The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
also include radioactive decay by
alpha radiation Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
or
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakd ...
. The shape of the valley is roughly an elongated
paraboloid In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plan ...
corresponding to the nuclide
binding energies In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
as a function of neutron and atomic numbers. The nuclides within the valley of stability encompass the entire
table of nuclides A table or chart of nuclides is a two-dimensional Cartesian coordinate system, graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol ''N'') and the other represents the number of protons (atomic number, sy ...
. The chart of those nuclides is known as a Segrè chart, after the physicist
Emilio Segrè Emilio Gino Segrè (1 February 1905 – 22 April 1989) was an Italian-American physicist and Nobel laureate, who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was awarded the Nobe ...
. The Segrè chart may be considered a map of the nuclear valley. The region of proton and neutron combinations outside of the valley of stability is referred to as the sea of instability. Scientists have long searched for long-lived heavy isotopes outside of the valley of stability, hypothesized by Glenn T. Seaborg in the late 1960s. These relatively stable nuclides are expected to have particular configurations of " magic" atomic and neutron numbers, and form a so-called island of stability.


Description

All atomic nuclei are composed of protons and neutrons bound together by the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
. There are 286
primordial Primordial may refer to: * Primordial era, an era after the Big Bang. See Chronology of the universe * Primordial sea (a.k.a. primordial ocean, ooze or soup). See Abiogenesis * Primordial nuclide, nuclides, a few radioactive, that formed before t ...
nuclides that occur naturally on earth, each corresponding to a unique number of protons, called the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
, ''Z'', and a unique number of neutrons, called the neutron number, ''N''. The
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
, ''A'', of a nuclide is the sum of atomic and neutron numbers, ''A'' = ''Z'' + ''N''. Not all nuclides are stable, however. According to Byrne, stable nuclides are defined as those having a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
greater than 1018 years, and there are many combinations of protons and neutrons that form nuclides that are unstable. A common example of an unstable nuclide is
carbon-14 Carbon-14, C-14, or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and co ...
that decays by
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
into
nitrogen-14 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 2 ...
with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
of about 5,730 years: : → + + In this form of decay, the original element becomes a new chemical element in a process known as
nuclear transmutation Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutatio ...
and a beta particle and an electron
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
are emitted. An essential property of this and all nuclide decays is that the total energy of the
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( ...
is less than that of the original nuclide. The difference between the initial and final nuclide binding energies is carried away by the kinetic energies of the decay products, often the beta particle and its associated neutrino. The concept of the valley of stability is a way of organizing all of the nuclides according to
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
as a function of neutron and proton numbers. Most stable nuclides have roughly equal numbers of protons and neutrons, so the line for which ''Z'' = ''N'' forms a rough initial line defining stable nuclides. The greater the number of protons, the more neutrons are required to stabilize a nuclide, however, so nuclides with larger values for ''Z'' require an even larger number of neutrons, ''N'' > ''Z'', to be stable. The valley of stability is formed by the negative of binding energy, the binding energy being the energy required to break apart the nuclide into its proton and neutron components. The stable nuclides have high binding energy, and these nuclides lie along the bottom of the valley of stability. Nuclides with weaker binding energy have combinations of ''N'' and ''Z'' that lie off of the line of stability and further up the sides of the valley of stability. Unstable nuclides can be formed in
nuclear reactors A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from ...
or supernovas, for example. Such nuclides often decay in sequences of
reactions Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction * Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and m ...
called
decay chain In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay dire ...
s that take the resulting nuclides sequentially down the slopes of the valley of stability. The sequence of decays take nuclides toward greater binding energies, and the nuclides terminating the chain are stable. The valley of stability provides both a conceptual approach for how to organize the myriad stable and unstable nuclides into a coherent picture and an intuitive way to understand how and why sequences of radioactive decay occur. File:BindingNuDat2.png, Chart of nuclides (isotopes) by binding energy, depicting the valley of stability. The diagonal line corresponds to equal numbers of neutrons and protons. Dark blue squares represent nuclides with the greatest binding energy, hence they correspond to the most stable nuclides. The binding energy is greatest along the floor of the valley of stability. File:HalflifeNuDat2.png, Chart of nuclides by half life. Black squares represent nuclides with the longest half lives hence they correspond to the most stable nuclides. The most stable, long-lived nuclides lie along the floor of the valley of stability. Nuclides with more than 20 protons must have more neutrons than protons to be stable. File:DecayModeNuDat2.png, Chart of nuclides by type of decay. Black squares are stable nuclides. Nuclides with excessive neutrons or protons are unstable to β (light blue) or β+ (green) decay, respectively. At high atomic number, alpha emission (orange) or spontaneous fission (dark blue) become common decay modes.


The role of neutrons

The protons and neutrons that comprise an atomic nucleus behave almost identically within the nucleus. The approximate symmetry of
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
treats these particles as identical, but in a different quantum state. This symmetry is only approximate, however, and the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
that binds nucleons together is a complicated function depending on nucleon type, spin state, electric charge, momentum, etc. and with contributions from non- central forces. The nuclear force is not a fundamental force of nature, but a consequence of the residual effects of the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
that surround the nucleons. One consequence of these complications is that although
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
, a bound state of a proton (p) and a neutron (n) is stable, exotic nuclides such as diproton or
dineutron Neutronium (sometimes shortened to neutrium, also referred to as neutrite) is a hypothetical substance composed purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the ...
are unbound. The nuclear force is not sufficiently strong to form either p-p or n-n bound states, or equivalently, the nuclear force does not form a
potential well A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy ( kinetic energy in the case of a gravitational potential well) because it is ca ...
deep enough to bind these identical nucleons. Stable nuclides require approximately equal numbers of protons and neutrons. The stable nuclide
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon- ...
(12C) is composed of six neutrons and six protons, for example. Protons have a positive charge, hence within a nuclide with many protons there are large repulsive forces between protons arising from the
Coulomb force Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is convention ...
. By acting to separate protons from one another, the neutrons within a nuclide play an essential role in stabilizing nuclides. With increasing atomic number, even greater numbers of neutrons are required to obtain stability. The heaviest stable element,
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
(Pb), has many more neutrons than protons. The stable nuclide 206Pb has ''Z'' = 82 and ''N'' = 124, for example. For this reason, the valley of stability does not follow the line ''Z'' = ''N'' for A larger than 40 (''Z'' = 20 is the element
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
). Neutron number increases along the line of beta stability at a faster rate than atomic number. The line of beta stability follows a particular curve of neutron–proton ratio, corresponding to the most stable nuclides. On one side of the valley of stability, this ratio is small, corresponding to an excess of protons over neutrons in the nuclides. These nuclides tend to be unstable to β+ decay or electron capture, since such decay converts a proton to a neutron. The decay serves to move the nuclides toward a more stable neutron-proton ratio. On the other side of the valley of stability, this ratio is large, corresponding to an excess of neutrons over protons in the nuclides. These nuclides tend to be unstable to β decay, since such decay converts neutrons to protons. On this side of the valley of stability, β decay also serves to move nuclides toward a more stable neutron-proton ratio.


Neutrons, protons, and binding energy

The mass of an atomic nucleus is given by :m = Z m_ + N m_ - \frac where m_ and m_ are the rest mass of a proton and a neutron, respectively, and E_ is the total
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of the nucleus. The
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicis ...
is used here. The binding energy is subtracted from the sum of the proton and neutron masses because the mass of the nucleus is ''less'' than that sum. This property, called the
mass defect Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is alway ...
, is necessary for a stable nucleus; within a nucleus, the nuclides are trapped by a
potential well A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy ( kinetic energy in the case of a gravitational potential well) because it is ca ...
. A semi-empirical mass formula states that the binding energy will take the form :E_ = a_ A - a_ A^ - a_ \frac - a_ \frac \pm \delta(A,Z) The difference between the mass of a nucleus and the sum of the masses of the neutrons and protons that comprise it is known as the
mass defect Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is alway ...
. EB is often divided by the mass number to obtain binding energy per nucleon for comparisons of binding energies between nuclides. Each of the terms in this formula has a theoretical basis. The coefficients a_, a_, a_, a_ and a coefficient that appears in the formula for \delta(A,Z) are determined empirically. The binding energy expression gives a quantitative estimate for the neutron-proton ratio. The energy is a quadratic expression in that is minimized when the neutron-proton ratio is N/Z \approx 1 + \frac A^ . This equation for the neutron-proton ratio shows that in stable nuclides the number of neutrons is greater than the number of protons by a factor that scales as A^. The figure at right shows the average binding energy per nucleon as a function of atomic mass number along the line of beta stability, that is, along the bottom of the valley of stability. For very small atomic mass number (H, He, Li), binding energy per nucleon is small, and this energy increases rapidly with atomic mass number.
Nickel-62 Nickel-62 is an isotope of nickel having 28 protons and 34 neutrons. It is a stable isotope, with the highest binding energy per nucleon of any known nuclide (8.7945 MeV). It is often stated that 56Fe is the "most stable nucleus", but only beca ...
(28 protons, 34 neutrons) has the highest mean binding energy of all nuclides, while iron-58 (26 protons, 32 neutrons) and
iron-56 Iron-56 (56Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei. ...
(26 protons, 30 neutrons) are a close second and third. These nuclides lie at the very bottom of the valley of stability. From this bottom, the average binding energy per nucleon slowly decreases with increasing atomic mass number. The heavy nuclide 238U is not stable, but is slow to decay with a half-life of 4.5 billion years. It has relatively small binding energy per nucleon. For β decay, nuclear reactions have the generic form : → + + where and are the
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
of the decaying nucleus, and X and X′ are the initial and final nuclides, respectively. For β+ decay, the generic form is : → + + These reactions correspond to the decay of a neutron to a proton, or the decay of a proton to a neutron, within the nucleus, respectively. These reactions begin on one side or the other of the valley of stability, and the directions of the reactions are to move the initial nuclides down the valley walls towards a region of greater stability, that is, toward greater binding energy. The figure at right shows the average binding energy per nucleon across the valley of stability for nuclides with mass number ''A'' = 125. At the bottom of this curve is
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
(52Te), which is stable. Nuclides to the left of 52Te are unstable with an excess of neutrons, while those on the right are unstable with an excess of protons. A nuclide on the left therefore undergoes β decay, which converts a neutron to a proton, hence shifts the nuclide to the right and toward greater stability. A nuclide on the right similarly undergoes β+ decay, which shifts the nuclide to the left and toward greater stability. Heavy nuclides are susceptible to α decay, and these nuclear reactions have the generic form, : → + As in β decay, the decay product X′ has greater binding energy and it is closer to the middle of the valley of stability. The α particle carries away two neutrons and two protons, leaving a lighter nuclide. Since heavy nuclides have many more neutrons than protons, α decay increases a nuclide's neutron-proton ratio.


Proton and neutron drip lines

The boundaries of the valley of stability, that is, the upper limits of the valley walls, are the neutron drip line on the neutron-rich side, and the proton drip line on the proton-rich side. The nucleon drip lines are at the extremes of the neutron-proton ratio. At neutron–proton ratios beyond the drip lines, no nuclei can exist. The location of the neutron drip line is not well known for most of the Segrè chart, whereas the proton and alpha drip lines have been measured for a wide range of elements. Drip lines are defined for protons, neutrons, and alpha particles, and these all play important roles in nuclear physics. The difference in binding energy between neighboring nuclides increases as the sides of the valley of stability are ascended, and correspondingly the nuclide half-lives decrease, as indicated in the figure above. If one were to add nucleons one at a time to a given nuclide, the process will eventually lead to a newly formed nuclide that is so unstable that it promptly decays by emitting a proton (or neutron). Colloquially speaking, the nucleon has 'leaked' or 'dripped' out of the nucleus, hence giving rise to the term "drip line". Proton emission is not seen in naturally occurring nuclides. Proton emitters can be produced via
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
s, usually utilizing
linear particle accelerator A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear b ...
s (linac). Although prompt (i.e. not beta-delayed) proton emission was observed from an isomer in
cobalt-53 Naturally occurring cobalt (Co) consists of a single stable isotope, Co. Twenty-eight radioisotopes have been characterized; the most stable are Co with a half-life of 5.2714 years, Co (271.8 days), Co (77.27 days), and Co (70.86 days). All other ...
as early as 1969, no other proton-emitting states were found until 1981, when the proton radioactive ground states of lutetium-151 and
thulium-147 Naturally occurring thulium (69Tm) is composed of one stable isotope, 169Tm (100% natural abundance). Thirty-four radioisotopes have been characterized, with the most stable being 171Tm with a half-life of 1.92 years, 170Tm with a half-life of 128 ...
were observed at experiments at the GSI in West Germany. Research in the field flourished after this breakthrough, and to date more than 25 nuclides have been found to exhibit proton emission. The study of proton emission has aided the understanding of nuclear deformation, masses and structure, and it is an example of
quantum tunneling In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
. Two examples of nuclides that emit neutrons are beryllium-13 (mean life ) and
helium-5 Although there are nine known isotopes of helium (2He) (standard atomic weight: ), only helium-3 () and helium-4 () are stable. All radioisotopes are short-lived, the longest-lived being with a half-life of . The least stable is , with a half-lif ...
(). Since only a neutron is lost in this process, the atom does not gain or lose any protons, and so it does not become an atom of a different element. Instead, the atom will become a new
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
of the original element, such as beryllium-13 becoming beryllium-12 after emitting one of its neutrons. In
nuclear engineering Nuclear engineering is the branch of engineering concerned with the application of breaking down atomic nuclei ( fission) or of combining atomic nuclei ( fusion), or with the application of other sub-atomic processes based on the principles of n ...
, a
prompt neutron In nuclear engineering, a prompt neutron is a neutron immediately emitted ( neutron emission) by a nuclear fission event, as opposed to a delayed neutron decay which can occur within the same context, emitted after beta decay of one of the fis ...
is a
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
immediately emitted by a
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
event. Prompt neutrons emerge from the fission of an unstable
fissionable In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typi ...
or
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
heavy nucleus almost instantaneously. Delayed neutron decay can occur within the same context, emitted after
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
of one of the
fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
s. Delayed neutron decay can occur at times from a few milliseconds to a few minutes. The U.S.
Nuclear Regulatory Commission The Nuclear Regulatory Commission (NRC) is an independent agency of the United States government tasked with protecting public health and safety related to nuclear energy. Established by the Energy Reorganization Act of 1974, the NRC began opera ...
defines a prompt neutron as a neutron emerging from fission within 10−14 seconds.


Island of stability

The island of stability is a region outside the valley of stability where it is predicted that a set of heavy
isotopes Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass numbers ...
with near magic numbers of protons and neutrons will locally reverse the trend of decreasing stability in elements heavier than uranium. The hypothesis for the island of stability is based upon the
nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell ...
, which implies that the
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
is built up in "shells" in a manner similar to the structure of the much larger electron shells in atoms. In both cases, shells are just groups of quantum
energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
s that are relatively close to each other. Energy levels from quantum states in two different shells will be separated by a relatively large energy gap. So when the number of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s and
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s completely fills the
energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
s of a given shell in the nucleus, the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
per nucleon will reach a local maximum and thus that particular configuration will have a longer lifetime than nearby isotopes that do not possess filled shells. A filled shell would have " magic numbers" of neutrons and protons. One possible magic number of neutrons for spherical nuclei is 184, and some possible matching proton numbers are 114, 120 and 126. These configurations imply that the most stable spherical isotopes would be
flerovium Flerovium is a superheavy chemical element with symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dub ...
-298,
unbinilium Unbinilium, also known as eka-radium or simply element 120, is the hypothetical chemical element in the periodic table with symbol Ubn and atomic number 120. ''Unbinilium'' and ''Ubn'' are the temporary systematic IUPAC name and symbol, which ar ...
-304 and
unbihexium Unbihexium, also known as element 126 or eka-plutonium, is the hypothetical chemical element with atomic number 126 and placeholder symbol Ubh. ''Unbihexium'' and ''Ubh'' are the temporary systematic element name, IUPAC name and symbol, respecti ...
-310. Of particular note is 298Fl, which would be " doubly magic" (both its proton number of 114 and neutron number of 184 are thought to be magic). This doubly magic configuration is the most likely to have a very long half-life. The next lighter doubly magic spherical nucleus is
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
-208, the heaviest known stable nucleus and most stable heavy metal.


Discussion

The valley of stability can be helpful in interpreting and understanding properties of nuclear decay processes such as decay chains and
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
. Radioactive decay often proceeds via a sequence of steps known as a decay chain. For example, 238U decays to 234Th which decays to 234mPa and so on, eventually reaching 206Pb: :\begin\\ \ce \ce \ce \\ \ce \\ \ce\\ \end With each step of this sequence of reactions, energy is released and the
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( ...
s move further down the valley of stability towards the line of beta stability. 206Pb is stable and lies on the line of beta stability. The fission processes that occur within
nuclear reactors A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from ...
are accompanied by the release of neutrons that sustain the
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
. Fission occurs when a heavy nuclide such as
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
absorbs a neutron and breaks into lighter components such as
barium Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
or
krypton Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is of ...
, usually with the release of additional neutrons. Like all nuclides with a high atomic number, these uranium nuclei require many neutrons to bolster their stability, so they have a large neutron-proton ratio (''N''/''Z''). The nuclei resulting from a fission (
fission products Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
) inherit a similar ''N''/''Z'', but have atomic numbers that are approximately half that of uranium. Isotopes with the atomic number of the fission products and an ''N''/''Z'' near that of uranium or other fissionable nuclei have too many neutrons to be stable; this neutron excess is why multiple free neutrons but no free protons are usually emitted in the fission process, and it is also why many fission product nuclei undergo a long chain of β decays, each of which converts a nucleus ''N''/''Z'' to (''N'' − 1)/(''Z'' + 1), where ''N'' and ''Z'' are, respectively, the numbers of neutrons and protons contained in the nucleus. When fission reactions are sustained at a given rate, such as in a liquid-cooled or solid fuel nuclear reactor, the nuclear fuel in the system produces many antineutrinos for each fission that has occurred. These antineutrinos come from the decay of fission products that, as their nuclei progress down a β decay chain toward the valley of stability, emit an antineutrino along with each β particle. In 1956, Reines and Cowan exploited the (anticipated) intense flux of antineutrinos from a nuclear reactor in the design of an experiment to detect and confirm the existence of these elusive particles.


See also

*
Alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
* Gamma decay *
Neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
*
Proton emission Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case t ...
*
Cluster decay Cluster decay, also named heavy particle radioactivity or heavy ion radioactivity, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typic ...
*
Stable nuclide Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
*
Nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell ...
* Nuclear drip line


References


External links

* '
The Live Chart of Nuclides - IAEA
'' with filter on decay type
The Valley of Stability (video)
- a virtual "flight" through 3D representation of the nuclide chart, by CEA (France)
The nuclear landscape: The variety and abundance of nuclei
- Chapter 6 of the book ''Nucleus: A trip into the heart of matter'' by Mackintosh, Ai-Khalili, Jonson, and Pena describes the valley of stability and its implications (Baltimore, MD:The Johns Hopkins University Press), 2001. {{ISBN, 0-801 8-6860-2 Nuclear physics Radioactivity Isotopes