Unparticle
   HOME

TheInfoList



OR:

In
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
, unparticle physics is a speculative theory that conjectures a form of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
that cannot be explained in terms of
particles In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
using the Standard Model of particle physics, because its components are
scale invariant In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical ter ...
.
Howard Georgi Howard Mason Georgi III (born January 6, 1947) is an American theoretical physicist and the Mallinckrodt Professor of Physics and Harvard College Professor at Harvard University. He is also Director of Undergraduate Studies in Physics. He was Co-M ...
proposed this theory in two 2007 papers, "Unparticle Physics" and "Another Odd Thing About Unparticle Physics". His papers were followed by further work by other researchers into the properties and phenomenology of unparticle physics and its potential impact on
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, astrophysics,
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
,
CP violation In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry ( parity symmetry). CP-symmetry states that the laws of physics should be th ...
, lepton flavour violation,
muon decay A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wit ...
, neutrino oscillations, and supersymmetry.


Background

All
particles In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
exist in states that may be characterized by a certain
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
, momentum and
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
. In most of the Standard Model of particle physics, particles of the same type cannot exist in another state with all these properties scaled up or down by a common factor –
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s, for example, always have the same mass regardless of their energy or momentum. But this is not always the case: massless particles, such as
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s, can exist with their properties scaled equally. This immunity to scaling is called "scale invariance". The idea of unparticles comes from conjecturing that there may be "stuff" that does not necessarily have zero mass but is still scale-invariant, with the same physics regardless of a change of length (or equivalently energy). This stuff is unlike particles, and described as unparticle. The unparticle stuff is equivalent to particles with a continuous spectrum of mass. Such unparticle stuff has not been observed, which suggests that if it exists, it must couple with normal matter weakly at observable energies. Since the Large Hadron Collider (LHC) team announced it will begin probing a higher energy frontier in 2009, some theoretical physicists have begun to consider the properties of unparticle stuff and how it may appear in LHC experiments. One of the great hopes for the LHC is that it might come up with some discoveries that will help us update or replace our best description of the particles that make up matter and the forces that glue them together.


Properties

Unparticles would have properties in common with
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s, which have almost zero mass and are therefore nearly
scale invariant In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical ter ...
. Neutrinos barely interact with matter – most of the time physicists can infer their presence only by calculating the "missing" energy and momentum after an interaction. By looking at the same interaction many times, a probability distribution is built up that tells more specifically how many and what sort of neutrinos are involved. They couple very weakly to ordinary matter at low energies, and the effect of the coupling increases as the energy increases. A similar technique could be used to search for evidence of unparticles. According to scale invariance, a distribution containing unparticles would become apparent because it would resemble a distribution for a fractional number of massless particles. This scale invariant sector would interact very weakly with the rest of the Standard Model, making it possible to observe evidence for unparticle stuff, if it exists. The unparticle theory is a high-energy theory that contains both Standard Model fields and Banks–Zaks fields, which have scale-invariant behavior at an infrared point. The two fields can interact through the interactions of ordinary particles if the energy of the interaction is sufficiently high. These particle interactions would appear to have "missing" energy and momentum that would not be detected by the experimental apparatus. Certain distinct distributions of missing energy would signify the production of unparticle stuff. If such signatures are not observed, bounds on the model can be set and refined.


Experimental indications

Unparticle physics has been proposed as an explanation for anomalies in superconducting cuprate materials, where the charge measured by
ARPES Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelec ...
appears to exceed predictions from
Luttinger's theorem In condensed matter physics, Luttinger's theorem is a result derived by J. M. Luttinger and J. C. Ward in 1960 that has broad implications in the field of electron transport. It arises frequently in theoretical models of correlated electrons, s ...
for the quantity of electrons.


References


External links

* * * * * * {{DEFAULTSORT:Unparticle Physics Particle physics Theoretical physics Hypothetical particles