Ultrasonic soldering
   HOME

TheInfoList



OR:

Ultrasonic soldering (U/S soldering) is a flux-less
soldering Soldering (; ) is a process in which two or more items are joined by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involv ...
process that uses ultrasonic energy, without the need for chemicals to solder materials, such as glass, ceramics, and
composite Composite or compositing may refer to: Materials * Composite material, a material that is made from several different substances ** Metal matrix composite, composed of metal and other parts ** Cermet, a composite of ceramic and metallic materials ...
s, hard to solder metals and other sensitive components which cannot be soldered using conventional means. Ultrasonic soldering is finding growing application in soldering of
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s and ceramics from solar
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
and medical
shape memory alloy In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It may also be called memory metal, memory alloy, smart metal, smart alloy, or muscle wire. P ...
s to specialized electronic and sensor packages. It has been used since 1955 to solder
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
and other metals without the use of flux.


Process

Ultrasonic soldering is a distinctly different process than
ultrasonic welding Ultrasonic welding is an industrial process whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, an ...
. Ultrasonic welding uses ultrasonic energy to join parts without adding any kind of filler material while ultrasonic soldering uses external heating to melt filler metal materials, namely solders, to form a joint. Ultrasonic soldering can be done with either a specialized
soldering iron A soldering iron is a hand tool used in soldering. It supplies heat to melt solder so that it can flow into the joint between two workpieces. A soldering iron is composed of a heated metal tip (the ''bit'') and an insulated handle. Heating ...
or a specialized solder pot. In either case the process can be automated for large-scale production or can be done by hand for
prototyping A prototype is an early sample, model, or release of a product built to test a concept or process. It is a term used in a variety of contexts, including semantics, design, electronics, and software programming. A prototype is generally used to ...
or repair work. Initially, U/S soldering was aimed at joining aluminum and other metals; however, with the emergence of active solders, a much wider range of metals, ceramics and glass can now be soldered. Ultrasonic soldering uses either ultrasonically coupled heated solder iron tips (0.5—10 mm) or ultrasonically coupled solder baths. In these devices, piezoelectric crystals are used to generate high frequency (20—60 kHz) acoustic waves in molten solder layers or batch, to mechanically disrupt oxides that form on the molten solder surfaces. The tips for ultrasonic soldering irons are also coupled to a
heating element A heating element converts electrical energy into heat through the process of Joule heating. Electric current through the element encounters resistance, resulting in heating of the element. Unlike the Peltier effect, this process is indepen ...
while the piezoelectric crystal is thermally isolated, in order to prevent degradation of the piezoelectric element. Ultrasonic soldering iron tips can heat (up to 450 °C) while mechanically oscillating at 20—60 kHz. This soldering tip can melt solder filler metals as acoustic vibrations are induced in the molten solder pool. The vibration and cavitation in the molten solder then permits solders to wet and adhere to many metal surfaces. The acoustic energy created by the solder tip or ultrasonic solder pot works via cavitation of the molten solder which mechanically disrupts oxide layers on the solder layers themselves and on metal surfaces being joined. Cavitation in the molten solder pool can be very effective in disrupting the oxides on many metals, however, it is not effective when soldering to ceramics and glass since they themselves are oxides or other non-metal compound that cannot be disrupted since they are the base materials. In the cases of soldering direct to glasses and ceramics, ultrasonic soldering filler metals need to be modified with active elements such as In, Ti, Hf, Zr and rare earth elements (Ce, La, and Lu). Solders when alloyed with these elements are called ''active solders'' since they directly act on the glass/ceramic surfaces to create a bond.


Adoption

The use of ultrasonic soldering is expanding, since it is clean and flux-less in combination with active solders being specified for joining assemblies where either
corrosive A corrosive substance is one that will damage or destroy other substances with which it comes into contact by means of a chemical reaction. Etymology The word ''corrosive'' is derived from the Latin verb ''corrodere'', which means ''to gnaw'', ...
flux can be trapped or otherwise disrupt operation or contaminate clean production environments or there are dissimilar materials / metals / ceramic / glasses being joined. To be effective in adhering to surfaces, active solder's own nascent oxide on melting need to be disrupted and ultrasonic agitation is well suited.


Further reading

* * * P. Vianco, AWS Soldering Handbook, Ed. 3. 1999, published by the American


External links


soniKKs Ultrasonics Technology GmbH, Germany



EWI, Ohio USA

Ultrasonic soldering of ceramics with indium—exemplary application with step-by-step images
{{electronics-stub Soldering Ultrasound