UV irradiation
   HOME

TheInfoList



OR:

Ultraviolet germicidal irradiation (UVGI) is a
disinfection A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than st ...
method that uses short-
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
(
ultraviolet C Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiatio ...
or UV-C) light to kill or inactivate
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in old ...
s by destroying
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main ...
s and disrupting their DNA, leaving them unable to perform vital cellular functions. UVGI is used in a variety of applications, such as food, surface, air, and
water purification Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for hu ...
. UV-C light is weak at the Earth's surface since the ozone layer of the atmosphere blocks it. UVGI devices can produce strong enough UV-C light in circulating air or water systems to make them inhospitable environments to microorganisms such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es,
mold A mold () or mould () is one of the structures certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not ...
s, and other
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a g ...
s. Recent studies have proven the ability of UVC light in inactivating the novel
Coronavirus Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, they cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the co ...
(
COVID-19 Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease quick ...
). UVGI can be coupled with a filtration system to sanitize air and water. The application of UVGI to disinfection has been an accepted practice since the mid-20th century. It has been used primarily in
medical sanitation Sterilization refers to any process that removes, kills, or deactivates all forms of life (particularly microorganisms such as fungi, bacteria, spores, and unicellular eukaryotic organisms) and other biological agents such as prions present in o ...
and sterile work facilities. Increasingly, it has been employed to sterilize drinking and
wastewater Wastewater is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industrial ...
since the holding facilities are enclosed and can be circulated to ensure a higher exposure to the UV. UVGI has found renewed application in
air purifier An air purifier or air cleaner is a device which removes contaminants from the air in a room to improve indoor air quality. These devices are commonly marketed as being beneficial to allergy sufferers and asthmatics, and at reducing or eliminating ...
s.


History

In 1878, Arthur Downes and Thomas P. Blunt published a paper describing the
sterilization Sterilization may refer to: * Sterilization (microbiology), killing or inactivation of micro-organisms * Soil steam sterilization, a farming technique that sterilizes soil with steam in open fields or greenhouses * Sterilization (medicine) rende ...
of bacteria exposed to short-wavelength light. UV has been a known
mutagen In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer i ...
at the cellular level for over 100 years. The 1903
Nobel Prize for Medicine The Nobel Prize in Physiology or Medicine is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, according ...
was awarded to
Niels Finsen Niels Ryberg Finsen (15 December 1860 – 24 September 1904) was a Faroese- Icelandic physician and scientist. In 1903, he was awarded the Nobel Prize in Medicine and Physiology "in recognition of his contribution to the treatment of diseases, e ...
for his use of UV against
lupus vulgaris Lupus vulgaris (also known as tuberculosis luposa) are painful cutaneous tuberculosis skin lesions with nodular appearance, most often on the face around the nose, eyelids, lips, cheeks, ears and neck. It is the most common ''Mycobacterium tuberc ...
,
tuberculosis Tuberculosis (TB) is an infectious disease usually caused by '' Mycobacterium tuberculosis'' (MTB) bacteria. Tuberculosis generally affects the lungs, but it can also affect other parts of the body. Most infections show no symptoms, ...
of the skin. Using UV light for disinfection of drinking water dates back to 1910 in
Marseille, France Marseille ( , , ; also spelled in English as Marseilles; oc, Marselha ) is the prefecture of the French department of Bouches-du-Rhône and capital of the Provence-Alpes-Côte d'Azur region. Situated in the camargue region of southern France ...
. The prototype plant was shut down after a short time due to poor reliability. In 1955, UV
water treatment Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, inc ...
systems were applied in Austria and Switzerland; by 1985 about 1,500 plants were employed in Europe. In 1998 it was discovered that
protozoa Protozoa (singular: protozoan or protozoon; alternative plural: protozoans) are a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Histo ...
such as
cryptosporidium ''Cryptosporidium'', sometimes informally called crypto, is a genus of apicomplexan parasitic alveolates that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea (intestinal crypt ...
and
giardia ''Giardia'' ( or ) is a genus of anaerobic flagellated protozoan parasite Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and ...
were more vulnerable to UV light than previously thought; this opened the way to wide-scale use of UV water treatment in North America. By 2001, over 6,000 UV water treatment plants were operating in Europe. Over time, UV costs have declined as researchers develop and use new UV methods to disinfect water and wastewater. Several countries have published regulations and guidance for the use of UV to disinfect drinking water supplies Examples include the US. and in the UK.


Method of operation

UV light is
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
with wavelengths shorter than
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
but longer than
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10 nanometers, corresponding to frequencies in the range 30&nbs ...
. UV is categorised into several wavelength ranges, with short-wavelength UV (UV-C) considered "germicidal UV". Wavelengths between about 200 nm and 300 nm are strongly absorbed by
nucleic acids Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
. The absorbed energy can result in defects including
pyrimidine dimers Pyrimidine dimers are molecular lesions formed from thymine or cytosine bases in DNA via photochemical reactions, commonly associated with direct DNA damage. Ultraviolet light (UV; particularly UVB) induces the formation of covalent linkages bet ...
. These dimers can prevent replication or can prevent the expression of necessary proteins, resulting in the death or inactivation of the organism. * Mercury-based lamps operating at low vapor pressure emit UV light at the 253.7 nm line. * Ultraviolet
light-emitting diode A light-emitting diode (LED) is a semiconductor Electronics, device that Light#Light sources, emits light when Electric current, current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy i ...
(UV-C LED) lamps emit UV light at selectable wavelengths between 255 and 280 nm. * Pulsed-xenon lamps emit UV light across the entire UV spectrum with a peak emission near 230 nm. This process is similar to, but stronger than, the effect of longer wavelengths (
UV-B Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
) producing
sunburn Sunburn is a form of radiation burn that affects living tissue, such as skin, that results from an overexposure to ultraviolet (UV) radiation, usually from the Sun. Common symptoms in humans and animals include: red or reddish skin that is h ...
in humans. Microorganisms have less protection against UV and cannot survive prolonged exposure to it. A UVGI system is designed to expose environments such as
water tank A water tank is a container for storing water. Water tanks are used to provide storage of water for use in many applications, drinking water, irrigation agriculture, fire suppression, agricultural farming, both for plants and livestock, chemi ...
s, sealed rooms and forced air systems to germicidal UV. Exposure comes from
germicidal lamp A germicidal lamp (also known as disinfection lamp or sterilizer lamp) is an electric light that produces ultraviolet C (UVC) light. This short-wave ultraviolet light disrupts DNA base pairing, causing formation of pyrimidine dimers, and lead ...
s that emit germicidal UV at the correct wavelength, thus irradiating the environment. The forced flow of air or water through this environment ensures exposure.


Effectiveness

The effectiveness of germicidal UV depends on the duration a microorganism is exposed to UV, the intensity and wavelength of the UV radiation, the presence of particles that can protect the microorganisms from UV, and a microorganism's ability to withstand UV during its exposure. In many systems, redundancy in exposing microorganisms to UV is achieved by circulating the air or water repeatedly. This ensures multiple passes so that the UV is effective against the highest number of microorganisms and will irradiate resistant microorganisms more than once to break them down. "
Sterilization Sterilization may refer to: * Sterilization (microbiology), killing or inactivation of micro-organisms * Soil steam sterilization, a farming technique that sterilizes soil with steam in open fields or greenhouses * Sterilization (medicine) rende ...
" is often misquoted as being achievable. While it is theoretically possible in a controlled environment, it is very difficult to prove and the term "disinfection" is generally used by companies offering this service as to avoid legal reprimand. Specialist companies will often advertise a certain
log reduction Log reduction is a measure of how thoroughly a decontamination process reduces the concentration of a contaminant. It is defined as the common logarithm of the ratio of the levels of contamination before and after the process, so an increment of ...
, e.g., 6-log reduction or 99.9999% effective, instead of sterilization. This takes into consideration a phenomenon known as light and dark repair ( photoreactivation and
base excision repair Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from ...
, respectively), in which a cell can repair DNA that has been damaged by UV light. The effectiveness of this form of disinfection depends on line-of-sight exposure of the microorganisms to the UV light. Environments where design creates obstacles that block the UV light are not as effective. In such an environment, the effectiveness is then reliant on the placement of the UVGI system so that line of sight is optimum for disinfection.
Dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ...
and films coating the bulb lower UV output. Therefore, bulbs require periodic cleaning and replacement to ensure effectiveness. The lifetime of germicidal UV bulbs varies depending on design. Also, the material that the bulb is made of can absorb some of the germicidal rays. Lamp cooling under airflow can also lower UV output. Increases in effectiveness and UV intensity can be achieved by using reflection. Aluminum has the highest reflectivity rate versus other metals and is recommended when using UV. One method for gauging UV effectiveness in water disinfection applications is to compute UV dose. EPA published UV dosage guidelines for water treatment applications in 1986. UV dose cannot be measured directly but can be inferred based on the known or estimated inputs to the process: * Flow rate (contact time) *
Transmittance Transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is t ...
(light reaching the target) *
Turbidity Turbidity is the cloudiness or haziness of a fluid caused by large numbers of individual particles that are generally invisible to the naked eye, similar to smoke in air. The measurement of turbidity is a key test of water quality. Fluids ...
(cloudiness) * Lamp age or
fouling Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling) or a non-living substance (inorganic or organic). Fouling is usually distinguished from other surf ...
or outages (reduction in UV intensity) In air and surface disinfection applications the UV effectiveness is estimated by calculating the UV dose which will be delivered to the microbial population. The UV dose is calculated as follows: : ''UV dose'' (μW·s/cm2) = ''UV intensity'' (μW/cm2) × ''exposure time'' (seconds) The UV intensity is specified for each lamp at a distance of 1 meter. UV intensity is inversely proportional to the square of the distance so it decreases at longer distances. Alternatively, it rapidly increases at distances shorter than 1m. In the above formula, the UV intensity must always be adjusted for distance unless the UV dose is calculated at exactly from the lamp. Also, to ensure effectiveness, the UV dose must be calculated at the end of lamp life (EOL is specified in number of hours when the lamp is expected to reach 80% of its initial UV output) and at the furthest distance from the lamp on the periphery of the target area. Some ''shatter-proof'' lamps are coated with a fluorated ethylene polymer to contain glass shards and mercury in case of breakage; this coating reduces UV output by as much as 20%. To accurately predict what UV dose will be delivered to the target, the UV intensity, adjusted for distance, coating, and end of lamp life, will be multiplied by the exposure time. In static applications the exposure time can be as long as needed for an effective UV dose to be reached. In case of rapidly moving air, in AC air ducts, for example, the exposure time is short, so the UV intensity must be increased by introducing multiple UV lamps or even banks of lamps. Also, the UV installation must be located in a long straight duct section with the lamps perpendicular to the airflow to maximize the exposure time. These calculations actually predict the UV fluence and it is assumed that the UV fluence will be equal to the UV dose. The UV dose is the amount of germicidal UV energy absorbed by a microbial population over a period of time. If the microorganisms are planktonic (free floating) the UV fluence will be equal the UV dose. However, if the microorganisms are protected by mechanical particles, such as dust and dirt, or have formed
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular po ...
a much higher UV fluence will be needed for an effective UV dose to be introduced to the microbial population.


Inactivation of microorganisms

The degree of inactivation by ultraviolet radiation is directly related to the UV dose applied to the water. The dosage, a product of UV light intensity and exposure time, is usually measured in microjoules per square centimeter, or equivalently as microwatt seconds per square centimeter (μW·s/cm2). Dosages for a 90% kill of most bacteria and viruses range between 2,000 and 8,000 μW·s/cm2. Larger parasites such as cryptosporidium require a lower dose for inactivation. As a result, US EPA has accepted UV disinfection as a method for drinking water plants to obtain cryptosporidium, giardia or virus inactivation credits. For example, for a 90% reduction of cryptosporidium, a minimum dose of 2,500 μW·s/cm2 is required based on EPA's 2006 guidance manual.


Strengths and weaknesses


Advantages

UV water treatment devices can be used for well water and surface water disinfection. UV treatment compares favourably with other water disinfection systems in terms of cost, labour and the need for technically trained personnel for operation.
Water chlorination Water chlorination is the process of adding chlorine or chlorine compounds such as sodium hypochlorite to water. This method is used to kill bacteria, viruses and other microbes in water. In particular, chlorination is used to prevent the spr ...
treats larger organisms and offers residual disinfection, but these systems are expensive because they need special operator training and a steady supply of a potentially hazardous material. Finally, boiling of water is the most reliable treatment method but it demands labour and imposes a high economic cost. UV treatment is rapid and, in terms of primary energy use, approximately 20,000 times more efficient than boiling.


Disadvantages

UV disinfection is most effective for treating high-clarity, purified
reverse osmosis Reverse osmosis (RO) is a water purification process that uses a partially permeable membrane to separate ions, unwanted molecules and larger particles from drinking water. In reverse osmosis, an applied pressure is used to overcome osmotic ...
distilled water. Suspended particles are a problem because microorganisms buried within particles are shielded from the UV light and pass through the unit unaffected. However, UV systems can be coupled with a pre-filter to remove those larger organisms that would otherwise pass through the UV system unaffected. The pre-filter also clarifies the water to improve light transmittance and therefore UV dose throughout the entire water column. Another key factor of UV water treatment is the flow rate—if the flow is too high, water will pass through without sufficient UV exposure. If the flow is too low, heat may build up and damage the UV lamp. A disadvantage of UVGI is that while water treated by chlorination is resistant to reinfection (until the chlorine off-gasses), UVGI water is not resistant to reinfection. UVGI water must be transported or delivered in such a way as to avoid reinfection.


Safety


To humans

UV light is hazardous to most living things. Skin exposure to germicidal wavelengths of UV light can produce rapid sunburn and
skin cancer Skin cancers are cancers that arise from the skin. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of skin cancers: basal-cell skin cancer (BCC) ...
. Exposure of the eyes to this UV radiation can produce extremely painful inflammation of the
cornea The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical ...
and temporary or permanent
vision impairment Visual impairment, also known as vision impairment, is a medical definition primarily measured based on an individual's better eye visual acuity; in the absence of treatment such as correctable eyewear, assistive devices, and medical treatment ...
, up to and including
blindness Visual impairment, also known as vision impairment, is a medical definition primarily measured based on an individual's better eye visual acuity; in the absence of treatment such as correctable eyewear, assistive devices, and medical treatment ...
in some cases. Common precautions are: # Warning labels warn humans about dangers of UV light. In home settings with children and pets, doors are additionally necessary. # Interlock systems. Shielded systems where the light is blocked inside, such as a closed water tank or closed air circulation system, often has interlocks that automatically shut off the UV lamps if the system is opened for access by humans. Clear viewports that block UVC are available. #
Protective gear Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, ele ...
. Most
protective eyewear Eye protection is protective gear for the eyes, and sometimes face, designed to reduce the risk of injury. Examples of risks requiring eye protection can include: impact from particles or debris, light or radiation, wind blast, heat, sea s ...
(in particular, all ANSI Z87.1-compliant eyewear) block UVC. Clothing, plastics, and most types of
glass Glass is a non- crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenchin ...
(but not fused silica) are effective in blocking UVC. Another potential danger is the UV production of
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
, which can be harmful when inhaled. US EPA designated 0.05
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, th ...
(ppm) of ozone to be a safe level. Lamps designed to release UV and higher frequencies are doped so that any UV light below 254 nm wavelengths will not be released, to minimize ozone production. A full-spectrum lamp will release all UV wavelengths and produce ozone when UV-C hits oxygen (O2) molecules. The
American Conference of Governmental Industrial Hygienists The American Conference of Governmental Industrial Hygienists (ACGIH) is a professional association of industrial hygienists and practitioners of related professions, with headquarters in Cincinnati, Ohio. One of its goals is to advance worker pr ...
(ACGIH) Committee on Physical Agents has established a threshold limit value (TLV) for UV exposure to avoid such skin and eye injuries among those most susceptible. For 254 nm UV, this TLV is 6 mJ/cm2 over an eight-hour period. The TLV function differs by wavelengths because of variable energy and potential for cell damage. This TLV is supported by the International Commission on Non-Ionizing Radiation Protection and is used in setting lamp safety standards by the Illuminating Engineering Society of North America. When the Tuberculosis Ultraviolet Shelter Study was planned, this TLV was interpreted as if eye exposure in rooms was continuous over eight hours and at the highest eye-level irradiance found in the room. In those highly unlikely conditions, a 6.0 mJ/cm2 dose is reached under the ACGIH TLV after just eight hours of continuous exposure to an irradiance of 0.2 μW/cm2. Thus, 0.2 μW/cm2 was widely interpreted as the upper permissible limit of irradiance at eye height. According to the FDA, a germicidal
excimer An excimer (originally short for excited dimer) is a short-lived dimeric or heterodimeric molecule formed from two species, at least one of which has a valence shell completely filled with electrons (for example, noble gases). In this case, form ...
lamp that emits 222 nm Far-UVC light instead of the common 254 nm light is safer to mamallian skin.


To items

UVC radiation is able to break down chemical bonds. This leads to rapid
aging Ageing ( BE) or aging ( AE) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In ...
of plastics, insulation,
gasket Some seals and gaskets A gasket is a mechanical seal which fills the space between two or more mating surfaces, generally to prevent leakage from or into the joined objects while under compression. It is a deformable material that is used to ...
s, and other materials. Note that plastics sold to be "UV-resistant" are tested only for the lower-energy UVB since UVC does not normally reach the surface of the Earth. When UV is used near plastic, rubber, or insulation, these materials may be protected by metal tape or aluminum foil.


Uses


Air disinfection

UVGI can be used to disinfect air with prolonged exposure. In the 1930s and 40s, an experiment in public schools in Philadelphia showed that upper-room ultraviolet fixtures could significantly reduce the transmission of
measles Measles is a highly contagious infectious disease caused by measles virus. Symptoms usually develop 10–12 days after exposure to an infected person and last 7–10 days. Initial symptoms typically include fever, often greater than , cough, ...
among students. In 2020, UVGI is again being researched as a possible countermeasure against
COVID-19 Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease quick ...
. UV and violet light are able to neutralize the infectivity of
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. The virus previously had a ...
. Viral titers usually found in the sputum of COVID-19 patients are completely inactivated by levels of UV-A and UV-B irradiation that are similar to those levels experienced from natural sun exposure. This finding suggests that the reduced incidence of SARS-COV-2 in the summer may be, in part, due to the neutralizing activity of solar UV irradiation. Various UV-emitting devices can be used for SARS-CoV-2 disinfection, and these devices may help in reducing the spread of infection. SARS-CoV-2 can be inactivated by a wide range of UVC wavelengths, and the wavelength of 222nm provides the most effective disinfection performance. Disinfection is a function of UV intensity and time. For this reason, it is in theory not as effective on moving air, or when the lamp is perpendicular to the flow, as exposure times are dramatically reduced. However, numerous professional and scientific publications have indicated that the overall effectiveness of UVGI actually increases when used in conjunction with fans and HVAC ventilation, which facilitate whole-room circulation that exposes more air to the UV source. Air purification UVGI systems can be free-standing units with shielded UV lamps that use a fan to force air past the UV light. Other systems are installed in forced air systems so that the circulation for the premises moves microorganisms past the lamps. Key to this form of sterilization is placement of the UV lamps and a good filtration system to remove the dead microorganisms. For example, forced air systems by design impede line-of-sight, thus creating areas of the environment that will be shaded from the UV light. However, a UV lamp placed at the coils and drain pans of cooling systems will keep microorganisms from forming in these naturally damp places.


Water disinfection

Ultraviolet disinfection of water is a purely physical, chemical-free process. Even
parasite Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson h ...
s such as ''
Cryptosporidium ''Cryptosporidium'', sometimes informally called crypto, is a genus of apicomplexan parasitic alveolates that can cause a respiratory and gastrointestinal illness (cryptosporidiosis) that primarily involves watery diarrhea (intestinal crypt ...
'' or ''
Giardia ''Giardia'' ( or ) is a genus of anaerobic flagellated protozoan parasite Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and ...
'', which are extremely resistant to chemical disinfectants, are efficiently reduced. UV can also be used to remove chlorine and chloramine species from water; this process is called
photolysis Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule. ...
, and requires a higher dose than normal disinfection. The dead microorganisms are not removed from the water. UV disinfection does not remove dissolved organics, inorganic compounds or particles in the water. The world's largest water disinfection plant treats drinking water for
New York City New York, often called New York City or NYC, is the List of United States cities by population, most populous city in the United States. With a 2020 population of 8,804,190 distributed over , New York City is also the L ...
. The
Catskill-Delaware Water Ultraviolet Disinfection Facility The Catskill-Delaware Water Ultraviolet Disinfection Facility is a ultraviolet (UV) water disinfection plant built in Westchester County, New York to disinfect water for the New York City water supply system. The compound is the largest ultraviol ...
, commissioned on 8 October 2013, incorporates a total of 56 energy-efficient UV reactors treating up to a day. Ultraviolet can also be combined with ozone or hydrogen peroxide to produce hydroxyl radicals to break down trace contaminants through an
advanced oxidation process Advanced oxidation processes (AOPs), in a broad sense, are a set of chemical treatment procedures designed to remove organic (and sometimes inorganic) materials in water and wastewater by oxidation through reactions with hydroxyl radicals (·OH) ...
. It used to be thought that UV disinfection was more effective for bacteria and viruses, which have more-exposed genetic material, than for larger pathogens that have outer coatings or that form cyst states (e.g., ''Giardia'') that shield their DNA from UV light. However, it was recently discovered that ultraviolet radiation can be somewhat effective for treating the microorganism ''Cryptosporidium''. The findings resulted in the use of UV radiation as a viable method to treat drinking water. ''Giardia'' in turn has been shown to be very susceptible to UV-C when the tests were based on infectivity rather than excystation. It has been found that
protists A protist () is any eukaryotic organism (that is, an organism whose cells contain a cell nucleus) that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor), the exc ...
are able to survive high UV-C doses but are sterilized at low doses.


Developing countries

A 2006 project at
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant un ...
produced a design for inexpensive water disinfection in resource deprived settings. The project was designed to produce an open source design that could be adapted to meet local conditions. In a somewhat similar proposal in 2014, Australian students designed a system using potato chip (crisp) packet foil to reflect solar UV radiation into a glass tube that disinfects water without power.


Wastewater treatment

Ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
in
sewage treatment Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable for discharge to the surrounding en ...
is commonly replacing chlorination. This is in large part because of concerns that reaction of the chlorine with organic compounds in the waste water stream could synthesize potentially toxic and long lasting chlorinated organics and also because of the
environmental risk In simple terms, risk is the possibility of something bad happening. Risk involves uncertainty about the effects/implications of an activity with respect to something that humans value (such as health, well-being, wealth, property or the environme ...
s of storing chlorine gas or chlorine containing chemicals. Individual wastestreams to be treated by UVGI must be tested to ensure that the method will be effective due to potential interferences such as
suspended solids Suspended solids refers to small solid particles which remain in suspension in water as a colloid or due to motion of the water. Suspended solids can be removed by sedimentation if their size or density is comparatively large, or by filtration. ...
, dyes, or other substances that may block or absorb the UV radiation. According to the
World Health Organization The World Health Organization (WHO) is a specialized agency of the United Nations responsible for international public health. The WHO Constitution states its main objective as "the attainment by all peoples of the highest possible level o ...
, "UV units to treat small batches (1 to several liters) or low flows (1 to several liters per minute) of water at the community level are estimated to have costs of US$20 per megaliter, including the cost of electricity and consumables and the annualized capital cost of the unit." Large-scale urban UV
wastewater treatment Wastewater treatment is a process used to remove contaminants from wastewater and convert it into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environm ...
is performed in cities such as
Edmonton, Alberta Edmonton ( ) is the capital city of the Canadian province of Alberta. Edmonton is situated on the North Saskatchewan River and is the centre of the Edmonton Metropolitan Region, which is surrounded by Alberta's central region. The city anch ...
. The use of ultraviolet light has now become standard practice in most municipal wastewater treatment processes. Effluent is now starting to be recognized as a valuable resource, not a problem that needs to be dumped. Many wastewater facilities are being renamed as water reclamation facilities, whether the wastewater is discharged into a river, used to irrigate crops, or injected into an aquifer for later recovery. Ultraviolet light is now being used to ensure water is free from harmful organisms.


Aquarium and pond

Ultraviolet sterilizers are often used to help control unwanted microorganisms in aquaria and ponds. UV irradiation ensures that pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Aquarium and pond sterilizers are typically small, with fittings for tubing that allows the water to flow through the sterilizer on its way from a separate external filter or water pump. Within the sterilizer, water flows as close as possible to the ultraviolet light source. Water pre-filtration is critical as water turbidity lowers UV-C penetration. Many of the better UV sterilizers have long dwell times and limit the space between the UV-C source and the inside wall of the UV sterilizer device.


Laboratory hygiene

UVGI is often used to disinfect equipment such as safety
goggles Goggles, or safety glasses, are forms of protective eyewear that usually enclose or protect the area surrounding the eye in order to prevent particulates, water or chemicals from striking the eyes. They are used in chemistry laboratories and ...
, instruments, pipettors, and other devices. Lab personnel also disinfect glassware and plasticware this way. Microbiology laboratories use UVGI to disinfect surfaces inside biological safety cabinets ("hoods") between uses.


Food and beverage protection

Since the U.S.
Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
issued a rule in 2001 requiring that virtually all
fruit In botany, a fruit is the seed-bearing structure in flowering plants that is formed from the ovary after flowering. Fruits are the means by which flowering plants (also known as angiosperms) disseminate their seeds. Edible fruits in partic ...
and
vegetable juice Vegetable juice is a juice drink made primarily of blended vegetables and also available in the form of powders. Vegetable juice is often mixed with fruits such as apples or grapes to improve flavor. It is often touted as a low-sugar alternative to ...
producers follow
HACCP Hazard analysis and critical control points, or HACCP (), is a systematic preventive approach to food safety from biological, chemical, and physical hazards in production processes that can cause the finished product to be unsafe and designs mea ...
controls, and mandating a 5-
log reduction Log reduction is a measure of how thoroughly a decontamination process reduces the concentration of a contaminant. It is defined as the common logarithm of the ratio of the levels of contamination before and after the process, so an increment of ...
in pathogens, UVGI has seen some use in sterilization of juices such as fresh-pressed.


Technology


Lamps

Germicidal UV for disinfection is most typically generated by a
mercury-vapor lamp A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate gl ...
. Low-pressure mercury vapor has a strong emission line at 254 nm, which is within the range of wavelengths that demonstrate strong disinfection effect. The optimal wavelengths for disinfection are close to 260 nm. Mercury vapor lamps may be categorized as either low-pressure (including amalgam) or medium-pressure lamps. Low-pressure UV lamps offer high efficiencies (approx. 35% UV-C) but lower power, typically 1 W/cm power density (power per unit of arc length). Amalgam UV lamps utilize an amalgam to control mercury pressure to allow operation at a somewhat higher temperature and power density. They operate at higher temperatures and have a lifetime of up to 16,000 hours. Their efficiency is slightly lower than that of traditional low-pressure lamps (approx. 33% UV-C output), and power density is approximately 2–3 W/cm3. Medium-pressure UV lamps operate at much higher temperatures, up to about 800 degrees Celsius, and have a polychromatic output spectrum and a high radiation output but lower UV-C efficiency of 10% or less. Typical power density is 30 W/cm3 or greater. Depending on the quartz glass used for the lamp body, low-pressure and amalgam UV emit radiation at 254 nm and also at 185 nm, which has chemical effects. UV radiation at 185 nm is used to generate ozone. The UV lamps for water treatment consist of specialized low-pressure mercury-vapor lamps that produce ultraviolet radiation at 254 nm, or medium-pressure UV lamps that produce a
polychromatic Polychrome is the "practice of decorating architectural elements, sculpture, etc., in a variety of colors." The term is used to refer to certain styles of architecture, pottery or sculpture in multiple colors. Ancient Egypt Colossal statu ...
output from 200 nm to visible and infrared energy. The UV lamp never contacts the water; it is either housed in a quartz glass sleeve inside the water chamber or mounted externally to the water, which flows through the transparent UV tube. Water passing through the flow chamber is exposed to UV rays, which are absorbed by suspended solids, such as microorganisms and dirt, in the stream.


Light emitting diodes (LEDs)

Recent developments in LED technology have led to commercially available UV-C LEDs. UV-C LEDs use semiconductors to emit light between 255 nm and 280 nm. The wavelength emission is tuneable by adjusting the material of the semiconductor. , the electrical-to-UV-C conversion efficiency of LEDs was lower than that of mercury lamps. The reduced size of LEDs opens up options for small reactor systems allowing for point-of-use applications and integration into medical devices. Low power consumption of semiconductors introduce UV disinfection systems that utilized small solar cells in remote or Third World applications. UV-C LEDs don't necessarily last longer than traditional germicidal lamps in terms of hours used, instead having more-variable engineering characteristics and better tolerance for short-term operation. A UV-C LED can achieve a longer installed time than a traditional germicidal lamp in intermittent use. Likewise, LED degradation increases with heat, while filament and HID lamp output wavelength is dependent on temperature, so engineers can design LEDs of a particular size and cost to have a higher output and faster degradation or a lower output and slower decline over time.


Water treatment systems

Sizing of a UV system is affected by three variables: flow rate, lamp power, and UV transmittance in the water. Manufacturers typically developed sophisticated
computational fluid dynamics Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate ...
(CFD) models validated with
bioassay A bioassay is an analytical method to determine the concentration or potency of a substance by its effect on living animals or plants (''in vivo''), or on living cells or tissues(''in vitro''). A bioassay can be either quantal or quantitative, dir ...
testing. This involves testing the UV reactor's disinfection performance with either MS2 or T1
bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bac ...
s at various flow rates, UV transmittance, and power levels in order to develop a regression model for system sizing. For example, this is a requirement for all
public water system Public water system is a regulatory term used in the United States and Canada, referring to certain utilities and organizations providing drinking water. United States The US Safe Drinking Water Act and derivative legislation define "public wate ...
s in the United States per the EPA UV manual. The flow profile is produced from the chamber geometry, flow rate, and particular turbulence model selected. The radiation profile is developed from inputs such as water quality, lamp type (power, germicidal efficiency, spectral output, arc length), and the transmittance and dimension of the quartz sleeve. Proprietary CFD software simulates both the flow and radiation profiles. Once the 3D model of the chamber is built, it is populated with a grid or mesh that comprises thousands of small cubes. Points of interest—such as at a bend, on the quartz sleeve surface, or around the wiper mechanism—use a higher resolution mesh, whilst other areas within the reactor use a coarse mesh. Once the mesh is produced, hundreds of thousands of virtual particles are "fired" through the chamber. Each particle has several variables of interest associated with it, and the particles are "harvested" after the reactor. Discrete phase modeling produces delivered dose, head loss, and other chamber-specific parameters.


Reduction Equivalent Dose

When the modeling phase is complete, selected systems are validated using a professional third party to provide oversight and to determine how closely the model is able to predict the reality of system performance. System validation uses non-pathogenic surrogates such as MS 2 phage or ''
Bacillus subtilis ''Bacillus subtilis'', known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacillus ...
'' to determine the Reduction Equivalent Dose (RED) ability of the reactors. Most systems are validated to deliver 40 mJ/cm2 within an envelope of flow and transmittance. To validate effectiveness in drinking water systems, the method described in the EPA UV guidance manual is typically used by US water utilities, whilst Europe has adopted Germany's DVGW 294 standard. For wastewater systems, the NWRI/AwwaRF Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse protocols are typically used, especially in waste
water reuse Water reclamation (also called wastewater reuse, water reuse or water recycling) is the process of converting municipal wastewater (sewage) or industrial wastewater into water that can be reused for a variety of purposes. Types of reuse include: ...
applications. Background Currently, the world is facing a food crisis due to poor agricultural practices, unfavorable weather conditions for agriculture, and natural disasters, among other forces that are beyond human control. Agricultural practices in the current times majorly rely on innovation and technology, and agricultural researchers have been so keen to study and propose the most efficient ways of production (Spindler et al., 2020). With the current rate at which the global population is increasing, there is a great need to increase food production to be able to feed the world, and one of the ways is by increasing the rate at which good is grown and harvested. Various methods have been proposed by researchers, including the use of greenhouses and genetic modification of plants and animals to be able to resist such things as diseases, increase growth rate and reduce maturity time. Some studies have suggested cross-breeding. However, most of these methods have proven to be less sufficient and have led to such things as undesired mutations (Spindler et al., 2020). Therefore, it is important to consider the safety of consumers in proposing and developing agricultural practices, and that is why it is important to grow food organically for human consumption. The use of ultraviolet light is one of the methods that have been studied and proven to be safer for the production of food for human consumption compared to the use of natural light. Naturally, seeds need light for germination. Plants need light for photosynthesis and growth. Natural light is the light that directly comes from the sun and hits the surface of the earth, including farmlands (Spindler et al., 2020). Plants naturally use natural sunlight. Ultraviolet light constitutes about 10 percent of the total radiation output that comes from the sun (Spindler et al., 2020), and this is specifically the light that plants need to manufacture food through photosynthesis and germinate. Therefore, when plants grow naturally, they only receive about 10 percent of the total light that comes from the sun, which the seeds may use for germination (Garcia et al., 2019). However, agricultural researchers have determined that pure ultraviolet light may have catalytic characteristics for the growth and germination of seeds (Proietti et al., 2021). Therefore, experts have found ways of creating ultraviolet light using high temperatures on spectrums and by using the excitation of atoms through a discharge of gases in tubes in the spectrum of different wavelengths. Ultraviolet light has many applications, but its use in agriculture has been extensively exploited to increase food production. Catalonia is one of the autonomous regions in Spain that is known for its rich agricultural industry, especially in the production of fruit and vegetables. The agricultural fields of Catalonia are about 60 thousand hectares, and because of its Mediterranean climate, the region is well endowed with natural resources, but the most applied agricultural practices are integrated (Spindler et al., 2020). One of the major fruit grown in the field is the tomato, and while most farming practices depend on natural light, some farmers have adopted the use of ultraviolet light to speed up the process of seed germination and growth (Proietti et al., 2021). However, more research needs to be conducted on how ultraviolet light may be more effective in the germination of tomato seeds in the region as compared to the use of natural light, while other factors are kept constant.


See also

*
HEPA HEPA (, high-efficiency particulate air) filter, also known as high-efficiency particulate absorbing filter and high-efficiency particulate arrestance filter, is an efficiency standard of air filters. Filters meeting the HEPA standard must ...
filter *
Portable water purification Portable water purification devices are self-contained, easily transported units used to purify water from untreated sources (such as rivers, lakes, and wells) for drinking purposes. Their main function is to eliminate pathogens, and often al ...
*
Sanitation Sanitation refers to public health conditions related to clean drinking water and treatment and disposal of human excreta and sewage. Preventing human contact with feces is part of sanitation, as is hand washing with soap. Sanitation syste ...
* Sanitation Standard Operating Procedures *
Solar water disinfection Solar water disinfection, in short SODIS, is a type of portable water purification that uses solar energy to make biologically-contaminated (e.g. bacteria, viruses, protozoa and worms) water safe to drink. Water contaminated with non-biological age ...


References

High Touch Points - UV Sterile Solutions has patented devises available like the Handle Attendant, Elevator Attendant. POS Touch Screen Attendant, and more at uvsterilesolutions.com


External links


International Ultraviolet Association
{{Wastewater Radiobiology Ultraviolet radiation Hygiene Waste treatment technology Sterilization (microbiology)