Tychonic system
   HOME

TheInfoList



OR:

The Tychonic system (or Tychonian system) is a model of the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univers ...
published by
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
in the late
16th century The 16th century begins with the Julian year 1501 ( MDI) and ends with either the Julian or the Gregorian year 1600 ( MDC) (depending on the reckoning used; the Gregorian calendar introduced a lapse of 10 days in October 1582). The 16th centur ...
, which combines what he saw as the mathematical benefits of the Copernican system with the philosophical and "physical" benefits of the
Ptolemaic system In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
. The model may have been inspired by Valentin Naboth and Paul Wittich, a
Silesia Silesia (, also , ) is a historical region of Central Europe that lies mostly within Poland, with small parts in the Czech Silesia, Czech Republic and Germany. Its area is approximately , and the population is estimated at around 8,000,000. S ...
n mathematician and astronomer. A similar model was implicit in the calculations more than a century earlier by
Nilakantha Somayaji Keļallur Nilakantha Somayaji (14 June 1444 – 1544), also referred to as Keļallur Comatiri, was a major mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehens ...
of the
Kerala school of astronomy and mathematics The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta S ...
.Joseph, George G. (2000), ''The Crest of the Peacock: Non-European Roots of Mathematics'', p. 408,
Princeton University Press Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial ...
,
It is conceptually a
geocentric model In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
, or more precisely geoheliocentric: the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
is at the centre of the universe, the Sun and
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
and the stars revolve around the Earth, and the other five
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s revolve around the Sun. At the same time, the motions of the planets are mathematically equivalent to the motions in Copernicus'
heliocentric Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth ...
system under a simple coordinate transformation, so that, as long as no force law is postulated to explain ''why'' the planets move as described, there is no mathematical reason to prefer either the Tychonic or the Copernican system.


Motivation for the Tychonic system

Tycho admired aspects of Copernicus's
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth a ...
, but felt that it had problems as concerned physics, astronomical observations of stars, and religion. Regarding the Copernican system, Tycho wrote,
This innovation expertly and completely circumvents all that is superfluous or discordant in the system of Ptolemy. On no point does it offend the principle of mathematics. Yet it ascribes to the Earth, that hulking, lazy body, unfit for motion, a motion as quick as that of the aethereal torches, and a triple motion at that.
In regard to physics, Tycho held that the Earth was just too sluggish and heavy to be continuously in motion. According to the accepted Aristotelian physics of the time, the heavens (whose motions and cycles were continuous and unending) were made of "Aether" or "Quintessence"; this substance, not found on Earth, was light, strong, and unchanging, and its natural state was circular motion. By contrast, the Earth (where objects seem to have motion only when moved) and things on it were composed of substances that were heavy and whose natural state was rest. Consequently, the Earth was considered to be a "lazy" body that was not readily moved. Thus while Tycho acknowledged that the daily rising and setting of the Sun and stars could be explained by the Earth's rotation, as Copernicus had said, still
such a fast motion could not belong to the earth, a body very heavy and dense and opaque, but rather belongs to the sky itself whose form and subtle and constant matter are better suited to a perpetual motion, however fast.
In regards to the stars, Tycho also believed that if the Earth orbited the Sun annually there should be an observable
stellar parallax Stellar parallax is the apparent shift of position of any nearby star (or other object) against the background of distant objects, and a basis for determining (through trigonometry) the distance of the object. Created by the different orbital p ...
over any period of six months, during which the angular orientation of a given star would change thanks to Earth's changing position (this parallax does exist, but is so small it was not detected until 1838, when Friedrich Bessel discovered a parallax of 0.314 arcseconds of the star
61 Cygni 61 Cygni is a binary star system in the constellation Cygnus, consisting of a pair of K-type dwarf stars that orbit each other in a period of about 659 years. Of apparent magnitude 5.20 and 6.05, respectively, they can be seen ...
). The Copernican explanation for this lack of parallax was that the stars were such a great distance from Earth that Earth's orbit was almost insignificant by comparison. However, Tycho noted that this explanation introduced another problem: Stars as seen by the naked eye appear small, but of some size, with more prominent stars such as
Vega Vega is the brightest star in the northern constellation of Lyra. It has the Bayer designation α Lyrae, which is Latinised to Alpha Lyrae and abbreviated Alpha Lyr or α Lyr. This star is relatively close at only from the Sun, a ...
appearing larger than lesser stars such as Polaris, which in turn appear larger than many others. Tycho had determined that a typical star measured approximately a minute of arc in size, with more prominent ones being two or three times as large. In writing to Christoph Rothmann, a Copernican astronomer, Tycho used basic geometry to show that, assuming a small parallax that just escaped detection, the distance to the stars in the Copernican system would have to be 700 times greater than the distance from the sun to Saturn. Moreover, the only way the stars could be so distant and still appear the sizes they do in the sky would be if even average stars were gigantic—at least as big as the orbit of the Earth, and of course vastly larger than the sun. (As a matter of fact, most stars visible to the naked eye are giants,
supergiant Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spa ...
s, or large, bright main-sequence stars.) And, Tycho said, the more prominent stars would have to be even larger still. And what if the parallax was even smaller than anyone thought, so the stars were yet more distant? Then they would all have to be even larger still. Tycho said
Deduce these things geometrically if you like, and you will see how many absurdities (not to mention others) accompany this assumption f the motion of the earthby inference.
Copernicans offered a religious response to Tycho's geometry: titanic, distant stars might seem unreasonable, but they were not, for the Creator could make his creations that large if he wanted. In fact, Rothmann responded to this argument of Tycho's by saying
at is so absurd about n average starhaving size equal to the whole rbit of the Earth What of this is contrary to divine will, or is impossible by divine Nature, or is inadmissible by infinite Nature? These things must be entirely demonstrated by you, if you will wish to infer from here anything of the absurd. These things that vulgar sorts see as absurd at first glance are not easily charged with absurdity, for in fact divine Sapience and Majesty is far greater than they understand. Grant the vastness of the Universe and the sizes of the stars to be as great as you like—these will still bear no proportion to the infinite Creator. It reckons that the greater the king, so much greater and larger the palace befitting his majesty. So how great a palace do you reckon is fitting to GOD?
Religion played a role in Tycho's geocentrism also—he cited the authority of scripture in portraying the Earth as being at rest. He rarely used Biblical arguments alone (to him they were a secondary objection to the idea of Earth's motion) and over time he came to focus on scientific arguments, but he did take Biblical arguments seriously. Tycho advocated as an alternative to the Ptolemaic geocentric system a "geoheliocentric" system (now known as the Tychonic system), which he developed in the late 1570s. In such a system, the Sun, Moon, and stars circle a central Earth, while the five planets orbit the Sun. The essential difference between the heavens (including the planets) and the Earth remained: Motion stayed in the aethereal heavens; immobility stayed with the heavy sluggish Earth. It was a system that Tycho said violated neither the laws of physics nor sacred scripture—with stars located just beyond Saturn and of reasonable size.


Precursors to geoheliocentrism

Tycho was not the first to propose a geoheliocentric system. It used to be thought that Heraclides in the 4th century BC had suggested that Mercury and
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
revolve around the Sun, which in turn (along with the other planets) revolves around the Earth. Macrobius Ambrosius Theodosius (395–423 AD) later described this as the "Egyptian System", stating that "it did not escape the skill of the
Egyptians Egyptians ( arz, المَصرِيُون, translit=al-Maṣriyyūn, ; arz, المَصرِيِين, translit=al-Maṣriyyīn, ; cop, ⲣⲉⲙⲛ̀ⲭⲏⲙⲓ, remenkhēmi) are an ethnic group native to the Nile, Nile Valley in Egypt. Egyptian ...
", though there is no other evidence it was known in ancient Egypt. The difference was that Tycho's system had all the planets (with the exception of Earth) revolving around the Sun, instead of just the interior planets of Mercury and Venus. In this regard, he was anticipated in the 15th century by the Kerala school astronomer
Nilakantha Somayaji Keļallur Nilakantha Somayaji (14 June 1444 – 1544), also referred to as Keļallur Comatiri, was a major mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehens ...
, whose geoheliocentric system also had all the planets revolving around the Sun.George G. Joseph (2000). ''The Crest of the Peacock: Non-European Roots of Mathematics'', p. 408.
Princeton University Press Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial ...
.
The difference to both these systems was that Tycho's model of the Earth does not rotate daily, as Heraclides and Nilakantha claimed, but is static.


History and development

Tycho's system was foreshadowed, in part, by that of
Martianus Capella Martianus Minneus Felix Capella (fl. c. 410–420) was a jurist, polymath and Latin prose writer of late antiquity, one of the earliest developers of the system of the seven liberal arts that structured early medieval education. He was a nati ...
, who described a system in which Mercury and Venus are placed on epicycles around the Sun, which circles the Earth.
Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formulat ...
, who cited Capella's theory, even mentioned the possibility of an extension in which the other three of the six known planets would also circle the Sun. This was foreshadowed by the Irish Carolingian scholar
Johannes Scotus Eriugena John Scotus Eriugena, also known as Johannes Scotus Erigena, John the Scot, or John the Irish-born ( – c. 877) was an Irish Neoplatonist philosopher, theologian and poet of the Early Middle Ages. Bertrand Russell dubbed him "the mos ...
in the 9th century, who went a step further than Capella by suggesting both Mars and Jupiter orbited the sun as well. In the 15th century, his work was anticipated by
Nilakantha Somayaji Keļallur Nilakantha Somayaji (14 June 1444 – 1544), also referred to as Keļallur Comatiri, was a major mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehens ...
, an Indian astronomer of the
Kerala school of astronomy and mathematics The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta S ...
, who first presented a geoheliocentric system where all the planets (Mercury, Venus, Mars, Jupiter and Saturn) orbit the Sun, which in turn orbits the Earth. The Tychonic system, which was announced in 1588, became a major competitor with the Copernican system as an alternative to the Ptolemaic. After
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
's observation of the phases of
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
in 1610, most cosmological controversy then settled on variations of the Tychonic and Copernican systems. In a number of ways, the Tychonic system proved philosophically more intuitive than the Copernican system, as it reinforced commonsense notions of how the Sun and the planets are mobile while the Earth is not. Additionally, a Copernican system would suggest the ability to observe
stellar parallax Stellar parallax is the apparent shift of position of any nearby star (or other object) against the background of distant objects, and a basis for determining (through trigonometry) the distance of the object. Created by the different orbital p ...
, which could not be observed until the 19th century. On the other hand, because of the intersecting deferents of Mars and the Sun (see diagram), it went against the Ptolemaic and Aristotelian notion that the planets were placed within nested spheres. Tycho and his followers revived the ancient Stoic philosophy instead, since it used fluid heavens which could accommodate intersecting circles.


Legacy

After Tycho's death,
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
used the observations of Tycho himself to demonstrate that the
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
s of the planets are
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
s and not
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
s, creating the modified Copernican system that ultimately displaced both the Tychonic and Ptolemaic systems. However, the Tychonic system was very influential in the late 16th and 17th centuries. In 1616, during the
Galileo affair The Galileo affair ( it, il processo a Galileo Galilei) began around 1610 and culminated with the trial and condemnation of Galileo Galilei by the Roman Catholic Inquisition in 1633. Galileo was prosecuted for his support of heliocentrism, the ...
, the papal Congregation of the Index banned all books advocating the Copernican system, including works by Copernicus, Galileo, Kepler and other authors until 1758.Heilbron (2010), pp. 218–9 The Tychonic system was an acceptable alternative as it explained the observed phases of Venus with a static Earth.
Jesuit , image = Ihs-logo.svg , image_size = 175px , caption = ChristogramOfficial seal of the Jesuits , abbreviation = SJ , nickname = Jesuits , formation = , founders ...
astronomers in China used it, as did a number of European scholars. Jesuits (such as Clavius,
Christoph Grienberger Christoph (Christophorus) Grienberger (also variously spelled Gruemberger, Bamberga, Bamberger, Banbergiera, Gamberger, Ghambergier, Granberger, Panberger) (2 July 1561 – 11 March 1636) was an Austrian Jesuit astronomer, after whom the crater ...
,
Christoph Scheiner Christoph Scheiner SJ (25 July 1573 (or 1575) – 18 June 1650) was a Jesuit priest, physicist and astronomer in Ingolstadt. Biography Augsburg/Dillingen: 1591–1605 Scheiner was born in Markt Wald near Mindelheim in Swabia, earlier markgrav ...
, Odo Van Maelcote) supported the Tychonic system. The discovery of
stellar aberration In astronomy, aberration (also referred to as astronomical aberration, stellar aberration, or velocity aberration) is a phenomenon which produces an apparent motion of celestial objects about their true positions, dependent on the velocity of t ...
in the early 18th century by James Bradley proved that the Earth did in fact move around the Sun and Tycho's system fell out of use among scientists. In the modern era, some of the modern geocentrists use a modified Tychonic system with elliptical orbits, while rejecting the concept of relativity.Musgrave, Iam. (Nov. 14, 2010). Geo-xcentricities part 2; the view from Mars. ''Astroblog.'' http://astroblogger.blogspot.com/2010/11/geo-xcentricities-part-2-view-from-mars.html


See also

*
Equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (su ...


References

{{DEFAULTSORT:Tychonic System Early scientific cosmologies Copernican Revolution
System A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and express ...